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(R18A0261) NETWORK ANALYSIS & TRANSMISSION LINES 
COURSE OBJECTIVES: 

This course introduces the basic concepts of transient analysis of the circuits, the basic two-

port network parameters, design analysis of the filters and attenuators and their use in the 

circuit theory, analysis of the locus diagrams, resonance, magnetic circuits. The emphasis 

of this course is laid on the basic operation of DC machines which includes DC generators 

and DC motors. 

UNIT – I: 

Transient Analysis (First and Second Order Circuits): Introduction to transient 

response and steady state response, Transient response of series –RL, RC RLC Circuits for 

sinusoidal, square, ramp and pulse excitations, Initial Conditions, Solution using 

Differential Equations approach and Laplace Transform method, 

UNIT – II: 

Two Port Networks: Impedance Parameters, Admittance Parameters, Hybrid Parameters, 

Transmission (ABCD) Parameters, Conversion of one of parameter to another, Conditions 

for Reciprocity and Symmetry, Interconnection of two port networks in Series, Parallel and 

Cascaded configurations, Image Parameters, Illustrative problems. 

UNIT-III: 

Locus diagrams: Resonance and Magnetic Circuits: Locus diagrams – Series and Parallel RL, 

RC, RLC circuits with variation of various parameters – Resonance-Series and Parallel circuits, 

Concept of band width and quality factor. 

Magnetic Circuits- Faraday’s laws of electromagnetic induction, Concept of self and 

mutual inductance, Dot convention, Coefficient of coupling, Composite magnetic circuits, 

Analysis of series and parallel magnetic circuits. 

UNIT – IV: 

Transmission Lines – I: Types, Parameters, Transmission Line Equations, Primary & 

Secondary Constants, Expressions for Characteristics Impedance, Propagation Constant, Phase 

and Group Velocities,   Infinite   Line   Concepts,   Losslessness/Low   Loss   Characterization,   

Distortion   – Condition for Distortionlessness and Minimum Attenuation, Illustrative 

Problems. 

UNIT V: 

Transmission Lines – II: SC and OC Lines, Input Impedance Relations, Reflection 

Coefficient, VSWR, λ/4, λ 2, λ /8 Lines – Impedance Transformations, Significance of Zmin 

and Zmax, Smith Chart – Configuration and Applications, Single Stub Matching, Illustrative 

Problems. 
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TEXT BOOKS: 

1. Electrical Circuits – A. Chakrabarhty, Dhanipat Rai & Sons. 

2. Network Analysis – N.C Jagan and C. Lakhminarayana, BS publications. 

 

3. A Text book of Electrical Technology by B.L Theraja and A.K Theraja, S.Chand 

publications 

4. Basic Concepts of Electrical Engineering – PS Subramanyam, BS Publications. 

5. Transmission Lines and Networks – Umesh Sinha, Satya prakashan, 2001, (Tech. 

India Publications), New Delhi. 

REFERENCE BOOKS: 

1. Engineering Circuits Analysis – William Hayt and Jack E. Kemmerly, Mc Graw Hill 

Company, 7th Edition. 

2. Basic Electrical Engineering – S.N. Singh PUI. 

3. Electrical Circuits – David A. Bell, Oxford Printing Press. 

4. Principles of Electrical Engineering by V.K Mehta, Rohit Mehta, S.Chand publications. 

5. Electrical Circuit Analysis – K.S. Suresh Kumar, Pearson Education. 

 

COURSE OUTCOMES: 

After going through this course the student gets a thorough knowledge on Transient 

analysis of the circuits, filters, attenuators and the operation of DC machines with 

which he/she can able to apply the above conceptual things to real world problems 

and applications 
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 UNIT – I: 

Transient Analysis (First and Second Order Circuits):  

• Introduction to transient response and steady state response 

• Transient response of series –RL, RC RLC Circuits for sinusoidal, 

square, ramp and pulse excitations 

• Initial Conditions  

• Solution using Differential Equations approach and Laplace 

Transform method 
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Introduction to transient response and steady state response 

• In this chapter we shall study transient response of the RL, RC series and RLC circuits with sinusoidal, 

square, ramp and pulse excitations.  

• Transients are present in the circuit, when the circuit is subjected to any changes either by changing source 

magnitude or while changing any circuit elements, provided circuit consists of any energy storage 

elements. 

• There are 3 circuit elements(1)Resistor (2)Inductor(3)Capacitor 

• Inductor and Capacitor are called storage elements. 

• Inductor doesn’t allow sudden change in current and stores the energy in the form of magnetic field. 

• Capacitor doesn’t allow sudden change in voltage and stores the energy in the form of electric field.  

• When the circuit is having only resistive elements, no transients present in the circuit since resistor allows 

sudden change in current and voltage and it doesn’t store any energy. 

• The total response of the circuit=Transient response +Steady state response. 

• Transient response changes with time and gets saturated after some time. It is also called as natural 

response. 

• Steady state response doesn’t change with the time. It is also called forced response. 

• The time taken for the circuit to change from one steady state to another steady state is called transient 

time. 

• Under initial conditions inductor behaves like open circuit i.e. IL=0 

• Under steady state conditions inductor behaves like short circuit i.e. VL=0 

• Under initial conditions Capacitor behaves like short circuit i.e. VC=0 

• Under  steady state conditions capacitor behaves like open circuit i.e. IC=0 
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t=0
-
indicates immediately before operating switch 

 

Fig1.1 

t=0
+
indicates immediately after operating switch 

t=∞ indicates steady state condition 

t=0
-

   iL=0  

t=0
+
   iL=0 

t=∞    iL=V/R 

 

Fig1.2 

t=0
-

   Vc=0  

t=0
+
   Vc=0 
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t=∞    Vc=V 

Transient response of series –RL Circuit for sinusoidal excitation 

 

Fig1.3 

Consider a circuit consisting of Series resistance and inductance as shown in fig1.3.The switch  S is closed 

at t=0. 

At t =0,a sinusoidal voltage V cos(ωt+θ) is applied to the series RL circuit,where V is amplitude of the wave 

and θ is phase angle. 

Application of KVL to the circuit results in the following differential equation. 

Vcos(𝛚𝐭 + θ)=Ri+𝐿
𝑑𝑖

𝑑𝑡
---------- (1.1) 

 

The corresponding characteristic equation is  

----------- (1.2) 

For the above equation, the solution consists of two parts, viz.complementary function and particular 

integral. 
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The complementary function of the solution is  

-----(1.3) 

The particular integral can be determined by using undetermined coefficients. 

By assuming 

------(1.4) 

--------(1.5) 

Substituting equations (1.4) and (1.5) in equation (2) 

 

Substituting the values of A and B in equ(1.4),we get  
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To find M and Φ,We divide one equation by the other 

 

 

Squaring both equations and adding,we get 

 

The particular current becomes  

-------- (1.6) 

The complete solution for the current i=ic+ip 

 

Since the inductor does not allow sudden change in currents, at t=0, i=0 
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The complete solution for the current is  

 

 

Example1.1 

In the circuit as shown in figure below, determine the complete solution for the current, when switch 

S is closed at t=0.Applied voltage v(t)=100cos(103t+π/2).Resistance R=20Ω and inductance L=0.1H. 

 

Solution 

By applying Kirchhoff’s voltage law to the circuit, we have  

20i+0.1
𝑑𝑖

𝑑𝑡
 =100 cos(103t+π/2). 

𝑑𝑖

𝑑𝑡
+200i=1000cos(1000t+ π/2) 

(D+200)i=1000cos(1000t+ π/2) 

The complementary function ic=c𝑒−200𝑡 

By assuming particular integral as  

ip=Acos(𝛚𝐭 + θ) + B sin(𝛚𝐭 + θ) 
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We get 

ip=
𝑉

√𝑅2+(𝛚𝐋)2
cos(𝛚𝐭 + θ − tan−1 𝛚𝐋

𝑅
) 

Where 𝛚 = 𝟏𝟎𝟎𝟎 𝐫𝐚𝐝/𝐬𝐞𝐜 

V=100 V,θ =
π

2
 

L=0.1H,R=20Ω 

Substituting the values in the above equation, we get 

ip=
100

√202+(𝟏𝟎𝟎𝟎∗𝟎.𝟏)2
cos(𝟏𝟎𝟎𝟎𝐭 +

π

2
− tan−1 𝟏𝟎𝟎

20
) 

=
100

101.9
cos(1000𝑡 +

𝜋

2
− 78.6°) 

=0.98cos(1000𝑡 +
𝜋

2
− 78.6°) 

The complete solution is  

i=c𝑒−200𝑡+0.98cos(1000t +
𝜋

2
− 78.6°) 

At t=0, the current flowing through the circuit is zero,.i.e.i=0 

c=-0.98cos(
𝜋

2
− 78.6°) 

The complete solution is  

i=[-0.98cos(
𝜋

2
− 78.6°)] 𝑒−200𝑡+0.98cos(1000𝑡 +

𝜋

2
− 78.6°)] 

SINUSOIDAL RESPONSE OF R-C CIRCUIT: 
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Consider a circuit consisting of resistance and capacitance in series as shown in fig. The switch, S,is closed at 

t=0.At t=0,a sinusoidal voltage  𝑉 cos(𝛚𝐭 +  θ) is applied to the R-C circuit,where V is the amplitude of the wave 

and θ =Phase angle. 

Applying KVL to the circuit results in the following differential equation. 

Vcos(𝛚𝐭 + θ)=Ri+
1

𝐶
∫ 𝑖𝑑𝑡 ------------- (1.7) 

R
𝑑𝑖

𝑑𝑡
+

𝑖

𝐶
= −V𝛚(𝐬𝐢𝐧𝛚𝐭 + θ) 

(D+
𝟏

𝑹𝑪
)i=

−𝑉𝛚

𝑹
(𝐬𝐢𝐧𝛚𝐭 + θ) ------------- (1.8) 

The complementary function ic=K𝒆
−𝒕

𝑹𝑪⁄ ------------- (1.9) 

The particular solution can be obtained by using undetermined coefficients. 

ip=A𝐜𝐨𝐬(𝛚𝐭+ θ)+Bsin𝛚𝐭 + θ) ------------- (1.10) 

ip1=-A𝛚sin(𝛚𝐭 + θ)+B𝛚𝐜𝐨𝐬(𝛚𝐭+ θ) ------------- (1.11) 

Substituting equations 1.10 and 1.11 in 1.8 we get 

{-A𝛚sin(𝛚𝐭 + θ)+ B𝛚𝐜𝐨𝐬(𝛚𝐭+ θ)}+
1

RC
 A𝐜𝐨𝐬(𝛚𝐭+ θ)+Bsin𝛚𝐭 + θ)= -

𝐕𝛚sin𝛚𝐭+θ) 

R
 

Comparing both sides 

-A𝛚+
 B

RC
=   

−𝐕𝛚

𝐑
              

B𝛚+
𝐀

𝐑𝐂
=0 

From which, 

A=
𝑽𝑹

𝑹𝟐+(
𝟏

𝝎𝒄
)
𝟐 
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B= -
𝐕

𝛚𝐂(𝐑𝟐+(
𝟏

𝛚𝐜
)
𝟐
)
 

Substituting values of A and B in equation (1.10), we have 

 

ip=
𝑽𝑹

𝑹𝟐+(
𝟏

𝝎𝒄
)
𝟐 𝐜𝐨𝐬(𝛚𝐭+ θ)+ -

𝐕

𝛚𝐂(𝐑𝟐+(
𝟏

𝛚𝐜
)
𝟐
)
sin𝛚𝐭 + θ) 

Putting 

Mcos∅=
𝑽𝑹

𝑹𝟐+(
𝟏

𝝎𝒄
)
𝟐 

M𝐬𝐢𝐧∅=
𝐕

𝛚𝐂(𝐑𝟐+(
𝟏

𝛚𝐜
)
𝟐
)
 

To find out M and ∅,we divide one equation by other, 

Mcos∅

𝐌 𝐬𝐢𝐧 ∅
= tan∅=

1

𝛚𝐂𝐑
 

Squaring both sides and adding, we get 

(M cos∅)2 + (Msin∅)2 =
𝑽𝟐

(𝑹𝟐 + (
𝟏

𝝎𝒄)
𝟐

)

 

M=
𝐕

√(𝐑𝟐+(
𝟏

𝛚𝐜
)
𝟐
)

 

The particular current becomes 

ip=
𝐕

√(𝐑𝟐+(
𝟏

𝛚𝐜
)
𝟐
)

𝐜𝐨𝐬 (𝛚𝐭 + 𝛉 + 𝐭𝐚𝐧−𝟏 𝟏

𝛚𝐂𝐑
)------------- (1.12) 
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The complete solution for the current i=ic+ip 

i= K𝒆
−𝒕

𝑹𝑪⁄ +
𝐕

√(𝐑𝟐+(
𝟏
𝛚𝐜

)
𝟐
)

𝐜𝐨𝐬 (𝛚𝐭 + 𝛉 + 𝐭𝐚𝐧−𝟏 𝟏

𝛚𝐂𝐑
)------------- (1.13) 

Since the capacitor does not allow sudden change in voltages at t= 0, 𝑖 =
V

R
cos 𝜃 

V

R
cos 𝜃 = 𝐾 +

𝐕

√(𝐑𝟐 + (
𝟏
𝛚𝐜)

𝟐

)

𝐜𝐨𝐬 (𝛉 + 𝐭𝐚𝐧−𝟏
𝟏

𝛚𝐂𝐑
) 

K=
V

R
cos 𝜃 −

𝐕

√(𝐑𝟐+(
𝟏

𝛚𝐜
)
𝟐
)

𝐜𝐨𝐬 (𝛉 + 𝐭𝐚𝐧−𝟏 𝟏

𝛚𝐂𝐑
) 

The complete solution for the current is 

I= 𝒆−
𝒕

𝑹𝑪

[
 
 
 
 
V

R
cos 𝜃 −

𝐕

√(𝐑𝟐+(
𝟏

𝛚𝐜
)
𝟐
)

𝐜𝐨𝐬 (𝛉 + 𝐭𝐚𝐧−𝟏 𝟏

𝛚𝐂𝐑
)

]
 
 
 
 

+ 

𝐕

√(𝐑𝟐+(
𝟏

𝛚𝐜
)
𝟐
)

𝐜𝐨𝐬 (𝛉 + 𝐭𝐚𝐧−𝟏 𝟏

𝛚𝐂𝐑
)------------- (1.14) 

Example 1.2. 

In the circuit as shown in Figure below, determine the complete solution for the current 

when switch S is closed at t=0.Applied voltage is v(t)=50cos(102t+π/4).Resistance R=10Ω and 

capacitance C=1𝝁𝑭. 
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Solution: 

By applying KVL to the circuit, we have  

10i+
1

10−6 ∫ 𝑖𝑑𝑡=50cos(𝟏𝟎𝟎𝐭 + 𝛑/𝟒) 

 

10
𝑑𝑖

𝑑𝑡
+

𝑖

10−6
= −5 × 103(𝐬𝐢𝐧𝟏𝟎𝟎𝐭 + 𝛑/𝟒) 

𝑑𝑖

𝑑𝑡
+

𝑖

10−5
= 500(𝐬𝐢𝐧𝟏𝟎𝟎𝐭 + 𝛑/𝟒) 

(D+
𝟏

10−5
)i=−500(𝐬𝐢𝐧𝟏𝟎𝟎𝐭 + 𝛑/𝟒) 

The complementary function ic=K𝒆
−𝒕

10−5⁄
 

The particular solution ip=A𝐜𝐨𝐬(𝛚𝐭+ θ)+Bsin𝛚𝐭 + θ)  

We get ip=
𝐕

√(𝐑𝟐+(
𝟏

𝛚𝐜
)
𝟐
)

𝐜𝐨𝐬 (𝛚𝐭 + 𝛉 + 𝐭𝐚𝐧−𝟏 𝟏

𝛚𝐂𝐑
) 

Where 𝜔 = 100
𝑟𝑎𝑑

𝑠𝑒𝑐
    𝜃 =

𝜋

4
  

R=10Ω  C=1𝜇𝐹 

ip=
𝟓𝟎𝟎

√(10𝟐+(
𝟏

100×10−6)
𝟐
)

𝐜𝐨𝐬 (100𝐭 +
𝜋

4
+ 𝐭𝐚𝐧−𝟏 𝟏

100×10−6×10
) 

ip= 𝟒. 𝟗𝟗 × 10−3 𝐜𝐨𝐬 (100𝐭 +
𝜋

4
+ 𝟖𝟗. 𝟗𝟒°) 

at t= 0, 𝑖 =
V

R
cos 𝜃 =

50

10
cos

𝜋

4
= 3.53 𝐴 

i= K𝒆
−𝒕

10−5⁄
+ 𝟒.𝟗𝟗 × 10−3 𝐜𝐨𝐬 (100𝐭 +

𝜋

4
+ 𝟖𝟗.𝟗𝟒°) 
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At t=0 

K=3.53−𝟒. 𝟗𝟗 × 10−3 𝐜𝐨𝐬 (
𝜋

4
+ 𝟖𝟗. 𝟗𝟒°) 

Hence the complete solution is  

i= [𝟑. 𝟓𝟑 − 𝟒. 𝟗𝟗 × 10−3 𝐜𝐨𝐬 (
𝜋

4
+ 𝟖𝟗. 𝟗𝟒°)] 𝒆

−𝒕
10−5⁄ + 𝟒. 𝟗𝟗 × 10−3 𝐜𝐨𝐬 (100𝐭 +

𝜋

4
+

𝟖𝟗. 𝟗𝟒°) 

SINUSOIDAL RESPONSE OF RLC CIRCUIT: 

 

Consider a circuit consisting of resistance, inductance and capacitance in series as shown in fig. The switch, S is 

closed at t=0.At t=0,a sinusoidal voltage  𝑉 cos(𝛚𝐭 +  θ) is applied to the RLC series circuit ,where V is the 

amplitude of the wave and θ =Phase angle. 

Applying KVL to the circuit results in the following differential equation. 

Vcos(𝛚𝐭 + θ)=RI+L
𝑑𝑖

𝑑𝑡
+

1

𝐶
∫ 𝑖𝑑𝑡 ------------- (1.15) 

Differentiating above equation, we get 

R
𝑑𝑖

𝑑𝑡
+ 𝐿

𝑑2𝑖

𝑑𝑡2
+

𝑖

𝐶
= −V𝛚sin(𝛚𝐭 + θ) 

(D2 +
𝑅

𝐿
D +

1

𝐿𝐶
)i= −

V𝛚

𝐿
sin(𝛚𝐭 + θ)------------- (1.16) 

The particular solution can be obtained by using undetermined coefficients. 

ip=A𝐜𝐨𝐬(𝛚𝐭+ θ)+Bsin(𝛚𝐭 + θ) ------------- (1.17) 

ip1=-A𝛚sin(𝛚𝐭 + θ)+B𝛚𝐜𝐨𝐬(𝛚𝐭+ θ) ------------- (1.18) 
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ip”=−A𝛚𝟐 𝐜𝐨𝐬(𝛚𝐭+ θ)−B𝛚𝟐sin(𝛚𝐭 + θ) ------------- (1.19) 

Substituting values of ip, ip
1 ,ip” in equ   (1.16) we have  

−A𝛚𝟐 𝐜𝐨𝐬(𝛚𝐭+ θ)−B𝛚𝟐sin(𝛚𝐭 + θ) +
R

L
⌈−A𝛚 sin(𝛚𝐭 + θ) + B𝛚𝐜𝐨𝐬(𝛚𝐭 +  θ) ⌉ +

1

𝐿𝐶
[𝐀 𝐜𝐨𝐬(𝛚𝐭 +  θ) + B sin(𝛚𝐭 + θ) ] = −

V𝛚

𝐿
sin(𝛚𝐭 + θ) ------------- (1.20) 

Comparing both sides, we have  

Sine coefficients 

−B𝛚𝟐 −  A𝛚
R

L
+

𝐵

𝐿𝐶
= −

V𝛚

𝐿
 

A𝛚
R

L
+ B(𝛚𝟐 −

𝟏

𝐋𝐂
) =

V𝛚

𝐿
------------- (1.21) 

Cosine coefficients 

−A𝛚𝟐 + B𝛚
R

L
+

𝐴

𝐿𝐶
= 0 

A(𝛚𝟐 −
𝟏

𝐋𝐂
) − B (

𝛚R

L
) = 0------------- (1.22) 

Solving (1.21) and(1.22) we get 

A=
V𝛚2R

𝐿2

[(
𝛚R

L
)
2
−((𝛚2−

1

𝐋𝐂
)
2
)]

 

 

B=
(𝛚2−

1

𝐋𝐂
)
2
V𝛚

𝐿[(
𝛚R

L
)
2
−((𝛚2−

1

𝐋𝐂
)
2
)]

 

Substituting values of A and B in equation (1.17),We get 

ip=

V𝛚2R

𝐿2

[(
𝛚R

L
)
2
−((𝛚2−

1

𝐋𝐂
)
2
)]

𝐜𝐨𝐬(𝛚𝐭+ θ)+
(𝛚2−

1

𝐋𝐂
)
2
V𝛚

𝐿[(
𝛚R

L
)
2
−((𝛚2−

1

𝐋𝐂
)
2
)]

sin(𝛚𝐭 + θ) -------------(1.23) 
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Putting   

Mcos∅ =
V𝛚2R

𝐿2

[(
𝛚R

L
)
2
−((𝛚2−

1

𝐋𝐂
)
2
)]

 

M𝐬𝐢𝐧∅ =
(𝛚2−

1

𝐋𝐂
)
2
V𝛚

𝐿[(
𝛚R

L
)
2
−((𝛚2−

1

𝐋𝐂
)
2
)]

 

 

To find out M and ∅,we divide one equation by other, 

Mcos∅

𝐌 𝐬𝐢𝐧 ∅
= tan∅=

(𝜔𝐿−
1

𝜔𝐶
)

𝑅
 

∅ = tan−1 [
(𝜔𝐿 −

1
𝜔𝐶)

𝑅
] 

Squaring both equations and adding we get 

(M cos∅)2 + (Msin∅)2 =
𝑽𝟐

(𝑹𝟐 + (
𝟏

𝝎𝒄
− 𝜔𝐿)

𝟐

)

 

M =
𝑽

√(𝑹𝟐 + (
𝟏

𝝎𝒄
− 𝜔𝐿)

𝟐

)

 

The particular current becomes 

ip=
𝐕

√(𝐑𝟐+(
𝟏

𝛚𝐜
−𝜔𝐿)

𝟐
)

𝐜𝐨𝐬(𝛚𝐭 + 𝛉 + tan−1 [
(𝜔𝐿−

1

𝜔𝐶
)

𝑅
])-------------(1.24) 

To find out complementary function ,we have the characteristic equation 
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(𝑫𝟐 +
𝑹

𝑳
𝑫 +

𝟏

𝑳𝑪
) = 𝟎------------- (1.25) 

The roots of equation(1.25) are  

D1,D2= −
𝑅

2𝐿
± √(

𝑅

2𝐿
)
2
−

1

𝐿𝐶
 

By assuming K1=−
𝑅

2𝐿
 

K2= √(
𝑅

2𝐿
)
2
−

1

𝐿𝐶
 

D1= K1 +K2 

D1= K1 −K2 

K2 becomes positive, when(
𝑅

2𝐿
)
2

>
1

𝐿𝐶
 

The roots are real and unequal, which gives an over damped response. Then equation (1.25) 

becomes  

[𝐷 − ( K1 + K2)][𝐷 − ( K1 − K2)]𝑖 = 0 

The complementary function of above equation is  

ic=c1𝑒
(𝑘1+𝑘2)𝑡+c2𝑒(𝑘1−𝑘2)𝑡+

𝐕

√(𝐑𝟐+(
𝟏

𝛚𝐜
−𝜔𝐿)

𝟐
)

𝐜𝐨𝐬(𝛚𝐭 + 𝛉 + tan−1 [
(𝜔𝐿−

1

𝜔𝐶
)

𝑅
]) 

K2 becomes negative when (
𝑅

2𝐿
)
2

<
1

𝐿𝐶
 

Then the roots are complex conjugate, which gives an under damped response. 

Then equation (1.25) becomes  

[𝐷 − ( K1 + 𝑗K2)][𝐷 − ( K1 − 𝑗K2)]𝑖 = 0 

The solution for above equation is  
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ic=𝑒𝑘1𝑡[𝑐1 cos 𝑘2𝑡 + 𝑐2 sin 𝑘2𝑡] 

i=ic+ip 

i=𝑒𝑘1𝑡[𝑐1 cos 𝑘2𝑡 + 𝑐2 sin 𝑘2𝑡] +
𝐕

√(𝐑𝟐+(
𝟏

𝛚𝐜
−𝜔𝐿)

𝟐
)

𝐜𝐨𝐬 (𝛚𝐭 + 𝛉 + tan−1 [
(𝜔𝐿−

1

𝜔𝐶
)

𝑅
]) 

k2 becomes zero when (
𝑅

2𝐿
)
2

=
1

𝐿𝐶
 

Then the roots are equal which gives critically damped response  

Then equation (1.25) becomes (𝐷 − 𝐾1)(𝐷 − 𝐾1)𝑖 = 0 

The complementary function for the above equation is  

ic=𝑒(𝑘1)𝑡[𝑐1 + 𝑐2𝑡] 

Therefore complete solution is i=ic+ip 

𝑒(𝑘1)𝑡[𝑐1 + 𝑐2𝑡] +
𝐕

√(𝐑𝟐 + (
𝟏
𝛚𝐜

− 𝜔𝐿)
𝟐

)

𝐜𝐨𝐬(𝛚𝐭 + 𝛉 + tan−1 [
(

1
𝜔𝐶

− 𝜔𝐿)

𝑅
]) 
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Solution using Laplace transformation method: 

Ramp input 

 

Square input 
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Pulse input 

Vs(t) 

 

 

Vs(t)=u(t)-u(t-T) 

Vs(s)=
1−𝑒−𝑆𝑇

𝑆
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UNIT – II: 

Two Port Networks: 

➢ Impedance Parameters,  

➢ Admittance Parameters,  

➢ Hybrid Parameters,  

➢ Transmission (ABCD) Parameters,  

➢ Conversion of one of parameter to another,  

➢ Conditions for Reciprocity and Symmetry, 

➢ Interconnection of two port networks in Series, Parallel and Cascaded configurations, 

Image Parameters,  

➢ Illustrative problems. 
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Introduction: 

A general network having two pairs of terminals, one labeled the “input terminals’’ and the other the “output terminals,’’ is a very 

important building block in electronic systems, communication systems, automatic control systems, transmission and distribution 

systems, or other systems in which an electrical signal or electric energy enters the input terminals, is acted upon by the network, and leaves 

via the output terminals. A pair of terminals at which a signal may enter or leave a network is also called a port, and a network like the 

above having two such pair of terminals is called a Two - port network. A general two-port network with terminal voltages and 

currents specified is shown in the figure below. In such networks the relation between the two voltages and the two currents can be 

described in six different ways resulting in six different systems of Parameters and in this chapter we will consider the most important 

four systems 

Impedance Parameters: Z parameters (open circuit impedance parameters) 

We will assume that the two port networks that we will consider are composed of linear elements and contain no independent 

sources but dependent sources are permissible. We will consider the two-port network as shown in the figure below. 

 

Fig 5.1: A general two-port network with terminal voltages and currents specified. The two- port network 

is composed of linear elements, possibly including dependent sources, but not containing any independent 

sources. 

 

The voltage and current at the input terminals are V1 & I1, and V2 & I2 are voltage and current at the output port. The directions of I1 and I2 

are both customarily selected as into the network at the upper conductors (and out at the lower conductors). Since the network is  
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Linear and contains no independent sources within it, V1 may be considered to be the superposition of two components, one caused by I1  

And the other by I2. When the same argument is applied to V2, we get the set of equations 

V1 = Z11I1 + Z12I2  

V2 = Z21I1 + Z22I2 

[V] = [Z][I] 

Where [V],[Z] and [I]are Voltage, impedance and current matrices. The description of the Z parameters, defined in the above 

equations is obtained by setting each of the currents equal to zero as given below. 

Z11 = V1/I1 │ I2=0 Z12 = V1/I2 │ I1=0 Z21 = V2/I1 │ I2=0 Z22 = V2/I2 │ I1=0 

Thus, since zero current results from an open-circuit termination, the Z parameters are known as the Open-circuit Impedance 

parameters. And more specifically Z11 & Z22 are called Driving point Impedances and Z12 & Z21 are called Reverse and 

Forward transfer impedances respectively. A basic Z parameter equivalent circuit depicting the above defining equations is 

shown in the figure below.  

Fig 5.2: Z-Parameter equivalent circuit 
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Admittance parameters: ( Y Parameters or Short circuit admittance parameters) 

The same general two port network shown for Z parameters is applicable here also and is shown below. 

 

 

 

Fig 5.3: A general two-port network with terminal voltages and currents specified. The two- port network 

is composed of linear elements, possibly including dependent sources, but not containing any independent 

sources. 

Since the network is linear and contains no independent sources within, on the same lines of Z parameters the 

defining equations for the Y parameters are given below. I1 and I2 may be considered to be the superposition of 

two components, one caused by V1 and the other by V2 and then we get the set of equations defining the Y 

parameters. 

I1 = Y11V1 + Y12V2  

I2 = Y21V1 + Y22V2 

 

Where the Ys are no more than proportionality constants and their dimensions are A/V (Current/Voltage). 

Hence they are called the Y (or admittance) parameters. They are also defined in the matrix form given below. 
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And in much simpler form as 

[I] = [Y][V] 

The individual Y parameters are defined on the same lines as Z parameters but by setting either of the voltages V1 and 

V2 as zero as given below. 

The most informative way to attach a physical meaning to the y parameters is through a direct inspection of defining 

equations. The conditions which must be applied to the basic defining equations are very important. In the first equation 

for example; if we let V2 zero, then Y11 is given by the ratio of I1 to V1. We therefore describe Y11 as the admittance 

measured at the input terminals with the output terminals short-circuited (V2 = 0). Each of the Y parameters may be 

described as a current-voltage ratio with either V1 = 0 (the input terminals short circuited) or V2 = 0 (the output terminals 

short-circuited): 

 

 

 

 

 

 

Because each parameter is an admittance which is obtained by short circuiting either the output or the input port, 

the Y parameters are known as the short-circuit admittance parameters. The specific name of Y11 is theshort-

circuit input admittance, Y22 is the short circuit output admittance, and Y12 and Y21 are the short-circuit reverse 

and forward transfer admittances respectively. 

 

Y11 = I1/V1 with V2 = 0 

Y12 = I1/V2 with V1 = 0 

Y21 = I2/V1 with V2 = 0 

y22 = I2/V2 with V1 = 0 
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h parameter representation is used widely in modeling of Electronic components and circuits particularly Transistors. Here both 

short circuit and open circuit conditions are utilized. 

The hybrid parameters are defined by writing the pair of equations relating V1, I1, V2, and I2: 

V1 = h11. I1 + h12.V2 

I2 = h21.I1 + h22.V2 

The nature of the parameters is made clear by first setting V2 = 0. Thus, 

h11 = V1/I1 with V2 =0 = short-circuit input impedance 

 

h21 = I2/I1 with V2 =0 = short-circuit forward current gain 

 

Then letting I1 = 0, we obtain h12 = V1/V2 with I1=0 = open-circuit reverse voltage gain 

 

h22 = I2/V2 with I1=0 = open-circuit output admittance 

Since the parameters represent an impedance, an admittance, a voltage gain, and a current 

gain, they are called the “hybrid’’ parameters. 

The subscript designations for these parameters are often simplified when they are applied to transistors. Thus, h11, 

h12, h21, and h22 become hi, hr, hf, and ho, respectively, where the subscripts denote input, reverse, forward, 

and output. 
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Transmission parameters: 

The last two-port parameters that we will consider are called the t parameters, the ABCD parameters, or simply the 

transmission parameters. They are defined by the equations 

V1 = A.V2 – B.I2 

I1 = C.V2 – D.I2 

and in Matrix notation these equations can be written in the form 

V1 = A B V2 

I1 = C D –I2 

where V1, V2, I1, and I2 are defined as as shown in the figure below. 

 

 

Fig 5.6: Two port Network for ABCD parameter representation with Input and output Voltages 

and currents 

The minus signs that appear in the above equations should be associated with the output current, as (−I2). Thus, 

both I1 and −I2 are directed to the right, the direction of energy or signal transmission. 

Note that there are no minus signs in the t or ABCD matrices. Looking again at the above equations  

we see that the quantities on the left, often thought of as the given or independent variables, are the input voltage and 

current, V1 and I1; the dependent variables, V2 and I2, are the output quantities. Thus, the transmission parameters 

provide a direct relationship between input and output. Their major use arises in transmission-line analysis and in 

cascaded networks. 

The four Transmission parameters are defined and explained below. 
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First A and C are defined with receiving end open circuited i.e. with I2 = 0 

 A  =  V1/V2  with I2 = 0 = Reverse voltage Ratio C 

= I1/V2 with  I2 = 0 = Transfer admittance 

Next B and D are defined with receiving end short circuited i.e. with V2 = 0 

 B = V1/−I2 with V2 = 0 = Transfer impedance  

 D = I1/−I2 with V2 = 0 = Reverse current ratio 

Inter relationships between different parameters of two port networks: 

Basic Procedure for representing any of the above four two port Network parameters in terms of the other parameters 

consists of the following steps: 

1. Write down the defining equations corresponding to the parameters in terms of which the other parameters 

are to be represented. 

2. Keeping the basic parameters same, rewrite/manipulate these two equations in such a way that the variables V1 ,V2 

,I1 ,and I2 are arranged corresponding to the defining equations of the first parameters. 

3. Then by comparing the parameter coefficients of the respective variables V1 ,V2 ,I1 ,and I2 on the right hand side 

of the two sets of equations we can get the inter relationship. 

Z Parameters in terms of Y parameters: 

Though this relationship can be obtained by the above steps, the following simpler method is used for Z 

in terms of Y and Y in terms of Z: 

Z and Y being the Impedance and admittance parameters (Inverse), in matrix notation they are governed by the 

following inverse relationship. 

 

Or: 
 

Thus : 
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Z Parameters in terms of ABCD parameters: 

 

The governing equations are: 

 V1 = AV2 – BI2 

I1 = CV2 – DI2 

from the second governing equation [ I1= CV2 – DI2 ] we can write 

 

Now substituting this value of V2 in the first governing equation [V1 = AV2 – BI2] we get 

 

Comparing these two equations for V1 and V2 with the governing equations of the Z parameter network we get Z 

Parameters in terms of ABCD parameters: 
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Z Parameters in terms of h parameters: 

 

The governing equations of h parameter network are: V1 = h11I1 + h12 V2 

I2 = h21 I1 + h22 V2 

From the second equation we get 

 

Substituting this value of V2 in the first equation for V1 we get: 

 

Now comparing these two equations for V1 and V2 with the governing equations of the Z 

Parameter network we get Z Parameters in terms of h parameters: 

        Here Δh  = h11 h22 – h12 h21 

Y Parameters in terms of Z parameters: 
 

Y and Z being the admittance and Impedance parameters (Inverse), in matrix notation they are governed by 

the following inverse relationship. 
 

Or: 
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Thus: 
 

          Here ΔZ = Z11 Z22 – Z12 Z21 

The other inter relationships also can be obtained on the same lines following the basic three steps given in 

the beginning. 

Conditions for reciprocity and symmetry in two port networks: 

A two port network is said to be reciprocal if the ratio of the output response variable to the input excitation variable is 

same when the excitation and response ports are interchanged. 

A two port network is said to be symmetrical if the port voltages and currents remain the same when the input and 

output ports are interchanged. 

In this topic we will get the conditions for Reciprocity and symmetry for all the four networks. The basic procedure 

for each of the networks consists of the following steps: 

Reciprocity: 

• First we will get an expression for the ratio of response to the excitation in terms of the particular 

parameters by giving voltage as excitation at the input port and considering the current in the output port as 

response ( by short circuiting the output port i.e setting V2 as zero 

). i.e find out ( I2 /V1 ) 

• Then we will get an expression for the ratio of response to the excitation in terms of the same parameters by 

giving voltage as excitation at the output port and considering the current in the input port as response ( by short 

circuiting the input port i.e. setting V1 as zero ). i.e find out ( I1 /V2 ) 

• Equating the RHS of these two expressions would be the condition for reciprocity 

Symmetry: 

• First we need to get expressions related to the input and output ports using the basic Z or Y parameter equations. 

• Then the expressions for Z11 and Z22 ( or Y11 and Y22 ) are equated to get the conmdition for reciprocity. 
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Z parameter representation: Condition for 

reciprocity: 

Let us take a two port network with Z parameter defining equations as given below: 

V1 = Z11I1 + Z12I2 V2 = 

Z21I1 + Z22I2 

First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the Z 

parameters by giving excitation at the input port and considering the current in the output port as 

response ( by short circuiting the output port i.e. setting V2 as zero ).The corresponding Z parameter circuit 

for this condition is shown in the figure below: 
 
 

 

( Pl note the direction of I2 is negative since when V2 port is shorted the current flows in the other direction ) 

Then the Z parameter defining equations are : 

V1 = Z11 . I1 − Z12. I2 and 0

 = Z21 . I1 − Z22. I2 

 

To get the ratio of response (I2) to the excitation (V1) in terms of the Z parameters I1 is to be 

eliminated fom the above equations. 

So from equation 2 in the above set we will get I1 = I2. Z22/ Z21 

And substitute this in the first equation to get 

V1 = (Z11 .I2. Z22/ Z21)− Z12. I2 = I2 [(Z11 . Z22/ Z21 ) − Z12 ] = I2 [(Z11 . Z22− Z12.Z21 ) / Z21 ) ] I2 = 

V1 . Z21/(Z11 . Z22− Z12.Z21 ) 

Next, we will get an expression for the ratio of response (I1) to the excitation (V2) in terms of the Z  



B.Tech (ECE) R-18 

Malla Reddy College of Engineering and Technology (MRCET) 

 

 

 

 

parameters by giving excitation V2 at the output port and considering the current I1 in the input port as 

response (by short circuiting the input port i.e. setting V1 as zero). The corresponding Z parameter 

circuit for this condition is shown in the figure below: 
 
 
 

 

( Pl note the direction of current I1 is negative since when V1 port is shorted the current flows in the other 
direction ) 

Then the Z parameter defining equations are : 

 0 = −Z11 . I1 + Z12. I2 and 

V2 = −Z21 . I1 + Z22. I2 

 
 

To get the ratio of response (I1) to the excitation (V2) in terms of the Z parameters I2 is to be 

eliminated fom the above equations. 

So from equation 1 in the above set we will get I2 = I1. Z11/ Z12 

And substitute this in the second equation to get 
 
 

V2 = (Z22.I1. Z11/ Z12)− Z21. I1 = I1 [(Z11 . Z22/ Z12 ) – Z21 ]  = I1 [(Z11 . Z22− Z12.Z21 ) / Z12 ) ] 

 

I1 = V2 . Z12/(Z11 . Z22− Z12.Z21 ) 

 
 

Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses 

I1 and I2 to be equal would be 
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Z12 = Z21 

 
 

And this is the condition for the reciprocity. 

 
 

Condition for symmetry: 

 

To get this condition we need to get expressions related to the input and output ports using the basic Z 

parameter equations. 

 

 
V1 = Z11I1 + Z12I2 V2 = 

Z21I1 + Z22I2 

 
 

To get the input port impedance I2 is to be made zero. i.e V2 should be open. 
 
 

V1 = Z11 . I1  i.e Z11 = V1/I1 │ I2=0 

 
 

Similarly to get the output port impedance I1 is to be made zero. i.e V1 should be open. 
 
 

V2 = Z22 . I2  i.e Z22 = V2/I2 │ I1=0 

 
 

Condition for Symmetry is obtained when the two port voltages are equal i.e. V1 = V2 and the two port 

currents are equal i.e. I1 = I2. Then 

V1/I1 = V2/I2 i.e Z11 = Z22 

And hence Z11 = Z22 is the condition for symmetry in Z parameters . 
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Y parameter representation: 

Condition for reciprocity : 

Let us take a two port network with Y parameter defining equations as given below: 
 
 

I1 = Y11V1 + Y12V2 I2 = 

Y21V1 + Y22V2 

 

First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the Y 

parameters by giving excitation (V1) at the input port and considering the current (I2) in the output port 

as response ( by short circuiting the output port i.e. setting V2 as zero ) 

Then the second equation in Y parameter defining equations would become 

I2 = Y21V1 + 0 and I2 / V1  = Y21 
 
 

Then we will get an expression for the ratio of response (I1) to the excitation (V2) in terms of the Y 

parameters by giving excitation (V2) at the output port and considering the current (I1) in the input port 

as response ( by short circuiting the input port i.e setting V1 as zero ) 

Then the first equation in Y parameter defining equations would become 

I1 = 0 + Y12V2 and I1 / V2 = Y12 

 
 

Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses 

I1 and I2 to be equal would be 

 

 
I1 / V2 = I2 / V1 

 
 

And hence Y12 = Y21 is the condition for the reciprocity in the Two port network with Y parameter 
representation. 
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Condition for symmetry: 

To get this condition we need to get expressions related to the input and output ports ( In this case Input 

and output admittances ) using the basic Y parameter equations 

 

 
I1 = Y11V1 + Y12V2 I2 = 

Y21V1 + Y22V2 

 

To get the input port admittance, V2 is to be made zero. i.e V2 should be shorted. 
 
 

I1 = Y11 . V1  i.e Y11 = I1/V1 │ V2=0 

 

Similarly to get the output port admittance V1 is to be made zero. i.e V1 should be shorted. 
 
 

I2 = Y22 . V2  i.e Y22 = I2/V2 │ V1=0 

 
 

Condition for Symmetry is obtained when the two port voltages are equal i.e. V1 = V2 and the two port 

currents are equal i.e. I1 = I2. Then 

I1/V1 = I2/V2 

 

And  hence Y11 = Y22 is the condition for symmetry in Y parameters. 

 

ABCD parameter representation: 

Condition for reciprocity: 

Let us take a two port network with ABCD parameter defining equations as given below: 
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V1 = A.V2 – B.I2 

I1  = C.V2 – D.I2 

First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the ABCD 

parameters by giving excitation (V1) at the input port and considering the current (I2) in the output port as 

response ( by short circuiting the output port i.e. setting V2 as zero ) 

Then the first equation in the ABCD parameter defining equations would become 
 
 

V1  = 0 – B.I2 = B.I2 
 

i.e I2 / V1 = – 1/B 

 
 

Then we will interchange the excitation and response i.e. we will get an expression for the ratio of response (I1) 

to the excitation (V2) by giving excitation (V2) at the output port and considering the current (I1) in the input 

port as response ( by short circuiting the input port i.e. setting V1 as zero ) 

Then the above defining equations would become 

0 = A.V2 – B.I2 I1 

= C.V2 – D.I2 

Substituting the value of I2 = A.V2 /B from first equation into the second equation we get 

 
 

I1 = C.V2 – D. A.V2 /B = V2 (C – D. A /B ) 
 

i.e I1/V2 = ( BC – DA ) / B = – (AD –BC)/B 

 
 

Assuming the input excitations V1 and V2 to be the same , then the condition for the out responses 

I1 and I2 to be equal would be 

I1 / V2 = I2 / V1 

i.e – (AD –BC)/B = – 1/B 

i.e (AD –BC) = 1 
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And hence AD – BC = 1 is the condition for Reciprocity in the Two port network with ABCD 

parameter representation. 

 
 

Condition for symmetry: 

 
 

To get this condition we need to get expressions related to the input and output ports. In this case it is easy 

to use the Z parameter definitions of Z11 and Z22 for the input and output ports respectively and get their 

values in terms of the ABCD parameters as shown below. 

V1 = A.V2 – B.I2 I1 

= C.V2 – D.I2 

 

Z11 = V1/I1 │ I2=0 

Applying this in both the equations we get 
 

 
 
 
 

 

Z11 = A/C 

Z11 = V1/I1 │ I2=0 = (A.V2 – B.I2)/(C.V2 – D.I2) │ I2=0 

= (A.V2 – B.0)/(C.V2 – D.0) 

= (A.V2)/(C.V2) = A/C 

 
 
 
 
 

 
 
 
 
 
 

 
Z22 = D/C 

Similarly Z22 = V2/I2 │ I1=0 

and using this in the second basic equation I1 = C.V2 – D.I2 

we get 0 = C.V2 – D.I2 or C.V2 = D.I2 V2 / 

I2 = D/C 
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And  the  condition for symmetry becomes Z11 = Z22 i.e A/C = D/C Or A  = D 

Hence A = D is the condition for Symmetry in ABCD parameter representation. 

 

 

h parameter representation: 

Condition for reciprocity : 

Let us take a two port network with h parameter defining equations as given below: 
 
 

V1 = h11. I1 + h12.V2 I2 

= h21. I1 + h22.V2 

 
 

First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the h 

parameters by giving excitation (V1) at the input port and considering the current (I2) in the output port 

as response ( by short circuiting the output port i.e. setting V2 as zero ) 

 

 
Then the first equation in the h parameter defining equations would become 

 
 

V1 = h11. I1 + h12.0 = h11. I1 

 
 

And in the same condition the second equation in the h parameter defining equations would become 

I2 = h21. I1 + h22.0 = h21. I1 

 
 

Dividing the second equation by the first equation we get 
 
 

I2 / V1 = ( h21. I1) / (h11. I1) = h21 /h11 
 

Now the excitation and the response ports are interchanged and then we will get an expression for 

the ratio of response (I1) to the excitation (V2) in terms of the h parameters by giving excitation (V2) at 

the output port and considering the current (I1) in the input port as response ( by short circuiting the 

input port i.e. setting V1 as zero ) 
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Then the first equation in h parameter defining equations would become 
 
 

0 = h11. I1 + h12.V2 i.e h11. I1 = – h12.V2 
 

i.e. I1 / V2 = – h12 / h11 

 
 

Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses 

I1 and I2 to be equal would be 

I1 / V2 = I2 / V1 

 

i.e = – h12 / h11 = h21 /h11 

 

i.e. h12 = – h21 

 
 

And hence [h12 = – h21 ] is the condition for the reciprocity in the Two port network with h 

parameter representation. 

 
 

Condition for symmetry: 

 
 

To get this condition we need to get expressions related to the input and output ports. In this case also it is 

easy to use the Z parameter definitions of Z11 and Z22 for the input and output ports respectively and get 

their values in terms of the h parameters as shown below. 

h parameter equations are : V1 = h11. I1 + h12.V2 

I2  = h21. I1 + h22.V2 
 

First let us get Z11 : 

Z11 = V1/I1 │ I2=0 
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= h11 + h12.V2 / I1 
 

Applying the condition I2=0 in the equation 2 we get 

0 = h21. I1 + h22.V2 i.e –h21. I1 = h22.V2 

 

 

or V2  =  I1 (–h21 / h22) 

 

Now substituting the value of V2 = I1 (–h21 / h22) in the above first expression for V1 we get 

V1 = h11. I1 + h12. I1.( –h21 / h22 ) 

Or V1/ I1 = (h11. h22 – h12. h21 )/ h22 = Δh / h22 

Or Z11 = Δh / h22 

Where Δh = (h11. h22 – h12. h21 ) Now let us 

get Z22 : 

Z22  =  V2/I2│ I1 = 0 

 

Applying the condition I1 = 0 in the second equation we get 
 

I2 = h21. 0 + h22.V2 i.e V2/I2 = 1/ h22 

And Z22 = 1/ h22 

Hence the condition for symmetry Z11 = Z22 becomes (Δh / h22) = (1/ h22 ) i.e Δh = 1 

 
 

Hence Δh = 1 is the condition for symmetry in h parameter representation. 
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Table: Summary of conditions for reciprocity and symmetry for Two port networks in terms of 

all four parameters. 

 
 
 

 

 

Different types of interconnections of two port networks: 

Series Connection: 

Though here only two networks are considered, the result can be generalized for any number of two port 

networks connected in series. 

Refer the figure below where two numbers of two port networks A and B are shown connected in series. All 

the input and output currents & voltages with directions and polarities are shown. 

 

 

Fig : Series connection of two numbers of Two Port Networks 

 
 

Open circuit Impedance parameters ( Z ) are used in characterizing the Series connected Two port 

Networks .The governing equations with Z parameters are given below: 
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For network A : 

 

 
 
And for network B: 

 

Referring to the figure above the various voltage and current relations are: 
 

 
 

Now substituting the above basic defining equations for the two networks into the above expressions 

for V1 and V2 and using the above current equalities we get: 
 

 

And similarly 
 

 

Thus we get for two numbers of series connected two port networks: 
 

Or in matrix form: 
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Thus it can be seen that the Z parameters for the series connected two port networks are the sum of the Z 
parameters of the individual two port networks. 

 
 

Cascade connection: 

 

In this case also though here only two networks are considered, the result can be generalized for any 

number of two port networks connected in cascade. 

Refer the figure below where two numbers of two port networks X and Y are shown connected in cascade. 

All the input and output currents & voltages with directions and polarities are shown. 

 
 
 

Fig 5.8: Two numbers of two port networks connected in cascade 
 

Transmission ( ABCD ) parameters are easily used in characterizing the cascade connected Two 

port Networks .The governing equations with transmission parameters are given below: 

 

 
For network X: 

 

And for network Y: 
 

 
Referring to the figure above the various voltage and current relations are: 

 

 

Then the overall transmission parameters for the cascaded network in matrix form will become 
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Where 
 
 
 

 

 

Thus it can be seen that the overall ABCD Parameter matrix of cascaded two Port Networks is the product of the 
ABCD matrices of the individual networks. 

Parallel Connection: 

 

Though here only two networks are considered, the result can be generalized for any number of two port 

networks connected in parallel. 

Refer the figure below where two numbers of two port networks A and B are shown connected in parallel. 

All the input and output currents & voltages with directions and polarities are shown. 
 

 

 

Fig 5.9: Parallel connection of two numbers of Two Port Networks 
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Short circuit admittance (Y) parameters are easily used in characterizing the parallel connected Two port 

Networks .The governing equations with Y parameters are given below: 

 

 
For network A: 
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And for network B: 
 

 

 
Referring to the figure above the various voltage and current relations are: 

 

Thus 
 
 
 

 

 
Thus we finally obtain the Y parameter equations for the combined network as: 

 
 
 

 

 
And in matrix notation it will be: 
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Thus it can be seen that the overall Y parameters for the parallel connected two port networks are the 
sum of the Y parameters of the individual two port networks. 

 
 
 

 
Image impedances in terms of ABCD parameters: 

 
 

Image impedances Zi1 and Zi2 of a two port network as shown in the figure below are defined as two values 

of impedances such that : 

a) When port two is terminated with an impedance Zi2 , the input impedance as seen from Port one is Zi1 and 

b) When port one is terminated with an impedance Zi1 , the input impedance as seen from Port two is Zi2 
 
 
 
 
 

 

 

Figure 5.10: pertining to condition (a) above 

 
 

Corresponding Relations are : Zi1 = V1 / I1 and Zi2 = V2 / – I2 
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Figure 5.10: pertining to condition (b) above 

 
 

Corresponding Relations are : Zi1 = V1 / – I1 and Zi2 = V2 / I2 

 
 

Such Image impedances in terms of ABCD parameters for a two port network are obtained 

below: 

The basic defining equations for a two port network with ABCD parameters are : 
 
 

V1 = A.V2 – B.I2 I1 

= C.V2 – D.I2 

 
 

First let us consider condition (a). 

 

Dividing the first equation with the second equation we get 
 
 
 

But we also have Zi2 = V2 / – I2 and so V2 = – Zi2 I2. Substituting this value of V2 in the above we get 
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Now let us consider the condition (b): 
 

The basic governing equations [V1 = A.V2 – B.I2 ] and [I1 = C.V2 – D.I2 ] are manipulated to get 

 
 
 

But we also have Zi1 = V1 / – I1 and so V1 = – Zi1 I1. Substituting this value of V1 in the above we get : 

 

Solving the above equations for Zi1 and Zi2 we get : 
 
 
 

 

 

Important formulae, Equations and Relations: 

 
 

• Basic Governing equations in terms of the various Parameters: 

▪ Z Paramaters : V1 = Z11I1 + Z12I2 

V2 = Z21I1 + Z22I2 

▪ Y Parameters: I1 = Y11V1 + Y12V2 

I2    = Y21V1 + Y22V2 

▪ h Parameters : V1 = h11. I1 + h12.V2 

I2  = h21.I1 + h22.V2 

ABCD Parameters: V1 = A.V2 – B.I2 
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I1  = C.V2 – D.I2 

• Conditions for Reciprocity and symmetry for Two Port Networks in terms of the various 

parameters : 
 
 

 

 
• Relations of Interconnected two port Networks : 

• The overall Z parameters for the series connected two port networks are the sum of the Z 

parameters of the individual two port networks. 

• The overall Y parameters for the parallel connected two port networks are the sum of the Y 

parameters of the individual two port networks. 

• The overall ABCD Parameter matrix of cascaded two Port Networks is the product of the ABCD 

matrices of the individual networks. 

 
Illustrative problems : 

 
 

Example 1: Find the Z Parameters of the following Two Port Network and draw it’s equivalent 

circuit in terms of Z1 Z2 and Z3 . 
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Solution: Applying KVL to the above circuit in the two loops ,with the current notation as shown, the 

loop equations for V1 and V2 can be written as : 
 
 
 

 

 
Comparing the equations (i) and (ii) above with the standard expressions for the Z parameter equations 

we get : 
 

Equivalent circuit in terms of Z1 Z2 and Z3 is shown below. 
 
 
 

Example 2: Determine the Z parameters of the π type two port network shown in the figure below. 
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Solution: 

From the basic Z parameter equations We know that 

Z11 = V1/I1 │ I2=0 Z12 

= V1/I2 │ I1=0 Z21 = 

V2/I1 │ I2=0 Z22 = 

V2/I2 │ I1=0 

We will first find out Z11 and Z21 which are given by the common condition I2 = 0 

1. We can observe that Z11 = V1/I1 with I2=0 is the parallel combination of R1 and (R2 + R3) . 

∴ Z11 = R1 (R2 + R3) / (R1+R2 + R3) 
 

2. Z21 = V2/I1 │ I2=0 

By observing the network we find that the current I1 is dividing into I3 and I4 as shown in the figure where 

I3 is flowing through R2(and R3 also since I2=0) 

 

 
Hence V2 = I3 xR2 

From the principle of current division we find that I3 = I1 . R1 / (R1+R2 + R3) Hence

 V2 = I3 xR2 = [ I1 . R1 / (R1+R2 + R3) ].R2 = I1 . R1 R2 / (R1+R2 + R3) 

And V2/I1 = R1 R2 / (R1+R2 + R3) 

∴ Z21 = R1 R2 / (R1+R2 + R3) 

Next we will find out Z12 and Z22 which are given by the common condition I1 = 0 3. Z12 = 

V1/I2 │ I1=0 
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By observing the network we find that the current I2 is now dividing into I3 and I4 as shown in the figure 

where I4 is flowing through R1 ( and R3 also since I1 = 0 ) 

Hence V1 = I4 xR1 

Again from the principle of current division we find that I4 = I2 . R2 / (R1+R2 + R3) Hence V1 

= I4 xR1 = [ I2 . R2 / (R1+R2 + R3) ].R1 = I2 . R1 R2 / (R1+R2 + R3) 

And V1/I2 = R1 R2 / (R1+R2 + R3) 

∴ Z12 =  R1 R2 / (R1+R2 + R3) 

4. We can again observe that Z22 = V2/I2 with I1=0 is the parallel combination of R2 and (R1 + R3) 

. 
 

∴ Z22 = R2 (R1 + R3) / (R1+R2 + R3) 

 
Example 3 : Determine the Z parameters of the network shown in the figure below. 

 
 
 

 

 
1). We will first find out Z11 and Z21 which are given by the common condition I2 = 0 (Output open 
circuited) 

 
 

With this condition the circuit is redrawn as shown below. 
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Since the current source is there in the second loop which is equal to I1 and I2 is zero, only current I1 

flows through the right hand side resistance of 10Ω and both currents I1( both loop currents ) pass 

through the resistance of 5 Ω as shown in the redrawn figure . 

Now the equation for loop one is given by : 

V1 = 10x I1 + 5 ( 2 I1 ) = 20 I1 and V1/I1 = 20Ω 
 
 

∴ V1/I1 │I2=0 = Z11 = 20Ω 

Next the equation for loop two is given by : 

V2 = 10x I1 + 5 ( 2 I1 ) = 20 I1 and V2/I1 = 20Ω 
 
 

∴ V2/I1 │I2=0 = Z21 = 20Ω 

2). Next we will find out Z12 and Z22 which are given by the common condition I1 = 0 (input open 
circuited) 

 
 

With this condition the circuit is redrawn as shown below. 
 
 
 

 

 
Now since the current I1 is zero ,the current source of I1 would no longer be there in the output loop and it is 

removed as shown in the redrawn figure. Further since input current I1= 0 ,there would be no current in the 

input side 10Ω and the same current I2 only flows through common resistance of 5 Ω and output side 

resistance of 10 Ω .With these conditions incorporated, now we shall rewrite the two loop equations ( for 

input V1 and output V2 ) to get Z12 and Z22 

Equation for loop one is given by : 
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V1 = 5 I2 and V1/I2 = 5Ω  
 

∴ V1/I2 │I1=0 = Z12 = 5Ω 
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And the equation for loop two is given by: 
 
 

V2 = 10 x I2 + 5 x I2 = 15 I2 and V2/I2 = 15Ω 

∴ V2/I2 │I1=0 = Z22 = 15Ω 

 

 
Finally: Z11 = 20Ω ; Z12  = 5Ω ; Z21 = 20Ω ; Z22 = 15Ω 

 

Example 4: Obtain the open circuit parameters of the Bridged T network shown in the figure below. 
 

 

 
Open circuit parameters are same as Z parameters. 

 
 

1). We will first find out Z11 and Z21 which are given by the common condition I2 = 0 (Output open 
circuited) 

 
 

With this condition the circuit is redrawn as shown below. 
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From the inspection of the figure in this condition it can be seen that ( since I2 is zero ) the two resistances 

i.e the bridged arm of 3Ω and output side resistance of 2Ω are in series and together are in parallel 

with the input side resistance of 1Ω. 

Hence the loop equation for V1 can be written as: 

V1 = I1 x [(3+2) ǁ 1 + 5] = I1 x 35/6 and V1/I1 = 35/6 

∴ V1/I1 │I2=0 = Z11 = 35/6Ω 

Next the loop equation for V2 can be written as : 
 
 

V2 = I3 x2 + I1x5 

But we know from the principle of current division that the current I3 = I1 x [1/(1+2+3)] = I1 x 1/6 Hence V2 = I1 x 

1/6 x 2 + I1x 5 = I1 x 16/3 and V2 / I1 = 16/3 Ω 

∴ V2/I1 │I2=0 = Z21 = 16/3 Ω 

 

 
2). Next we will find out Z12 and Z22 which are given by the common condition I1 = 0 (input open 
circuited) 

With this condition the circuit is redrawn as shown below. 
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From the inspection of the figure in this condition it can be seen that ( since I1 is zero ) the two resistances i.e 

the bridged arm of 3Ω and input side resistance of 1Ω are in series and together are in parallel with the 

output side resistance of 2Ω. Further I2 = I5 + I6 

Hence the loop equation for V1 can be written as : V1 = 

I5 x1 + I2x5 

But we know from the principle of current division that the current I5 = I2 x [2/(1+2+3)] = I2 x 1/3 Hence V1 = I2 x 

1/3 x 1 + I2x 5 = I2x 16/3 and V1 / I2 = 16/3 Ω 

∴ V1/I2 │I1=0 = Z12 = 16/3 Ω 

Next the loop equation for V2 can be written as: 
 
 

V2 = I6 x2 + I2x5 
 
 

But we know from the principle of current division that the current I6 = I2 x [1/(1+2+3)] = I2 x (3+1)/6 = (I2 x 

2/3) 

 

 
Hence V2 = I2 x (2/3)x 2 + I2x5 = I2 x 19/3 and V2/I2 = 19/3 

∴ V2/I2 │I2=0 = Z22 = 19/3 Ω 

 
Example 5 : Obtain Z parameters of the following π network with a controlled current source of 

0.5 I3 in the input port. 
 
 
 



B.Tech (ECE) R-18 

Malla Reddy College of Engineering and Technology (MRCET) 

 

 

 

1). We will first find out Z11 and Z21 which are given by the common condition I2 = 0 (Output open 
circuited) 

With this condition the circuit is redrawn as shown below. 
 
 
 

 

 
In this condition we shall first apply Kirchhoff’s current law to the node ‘c’: 

Then I1 = 0.5I3 + I3 (I3 being the current through the resistances of 8 Ω and 5 Ω ) 

i.e I1 = 0.5I3 + I3 or I1 = 1.5I3 or I3 = I1/1.5 i.e I3 = (2/3)I1 

Now we also observe that V1 = I3(8+5) = 13. I3 

Using the value of I3 = (2/3)I1 into the above expression we get V1 = 

13(2/3)I1 and V1/ I1 = 26/3 = 8.67 

∴ V1/I1 │I2=0 = Z11 = 8.67Ω 

Next we also observe that V2 = 5 . I3 and substituting the above value of I3 = (2/3)I1 into this expression 

for V2 we get : 

V2 = 5 . I3 i.e V2 = 5 . (2/3)I1 i.e V2 / I1 = 10/3 = 3.33Ω 
 
 

∴ V2/I1 │I2=0 = Z21 = 3.33 Ω 

 

 
2). Next we will find out Z12 and Z22 which are given by the common condition I1 = 0 (input open 
circuited) 

With this condition the circuit is redrawn as shown below. 
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In this condition now we shall first apply Kirchhoff’s current law to the node ‘e’: 

Then I2 = 0.5I3 + I3 ( 0.5.I3 being the current through the resistance of 8 Ω and I3 being the current 

through the resistances of 5 Ω ) 

i.e I2 = 0.5I3 + I3 or I2 = 1.5I3 or I3 = I2/1.5 i.e I3 = (2/3)I2 

Now we also observe that V1 = (-0.5I3 x 8 + I3x5) = I3 ( it is to be noted here carefully that – sign is to be taken 

before 0.5I3 x8 since the current flows through the resistance of 8 Ω now in the reverse direction. 

Using the value of I3 = (2/3)I2 into the above expression for V1 we get V1 = 

(2/3)I2 and  V1/ I2 = 0.67 

∴ V1/I2 │I1=0 = Z12 = 0.67Ω 

Next we also observe that V2 = 5 . I3 and substituting the above value of I3 = (2/3)I2 into this expression 

for V2 we get : 

V2 = 5 . I3 i.e V2 = 5 . (2/3)I2 i.e V2 / I2 = 10/3 = 3.33Ω 
 
 

∴ V2/I2 │I1=0 = Z21 = 3.33 Ω 

Example 6 : Find the Y parameters of the following π type two port network and draw it’s Y 

parameter equivalent circuit in terms of the given circuit parameters. 
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Applying KCL at node (a) we get 
 
 

 

Similarly applying KCL to node (c ) we get 
 
 
 

 

 
Comparing the equations (i) and (ii) above with the standard expressions for the Y parameter equations 

we get : 
 
 
 

Observing the equations (i) and (ii) above we find that : 

• The terms V1 (YA+ YB) and V2(Yc+YB) are the currents through the admittances Y11 and Y22 and 

• The terms -YB .V2 and -YB .V1 are the dependent current sources in the input and the output ports respectively. 
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These observations are reflected in the equivalent circuit shown below. 
 
 
 

 

 
In the above figure Y11 = (YA+ YB) & Y22 = (Yc+YB) are the admittances and 

 
 

Y12 .V2 = -YB .V2 & Y21 .V1 = -YB .V1 are the dependent current sources 
 
Example 7: Find the Y parameters of the following network 
 
 
 

 

 
Solution: We will solve this problem in two steps. 

1. We shall first express the Z parameters of the given T network in terms of the impedances Z1, Z2 and Z3 using the 

standard formulas we already know and substitute the given values of Z1, Z2 and Z3 . 
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2. Then convert the values of the Z parameters into Y parameters i.e express the Y parameters in terms of Z 

parameters using again the standard relationships. 
 

Example 8: Find the ‘ h’ parameters of the network shown below. (fig12.34) 
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First let us write down the basic ‘ h’ parameter equations and give the definitions of the ‘ h’ 

parameters. 

V1 = h11. I1 + h12.V2 I2 

= h21.I1 + h22.V2 

h11 = V1/I1 with V2 =0 h21 = I2/I1 with V2 =0 

 

h12 = V1/V2 with I1=0 h22 = I2/V2 with I1=0 

 
 

Now 
 
 

1). We will first find out h11 and h21 which are given by the common condition V2 = 0 (Output short 
circuited) 

In this condition it can be observed that the resistance RC and the current source αI1 become parallel with 

resistance RB. 

For convenience let us introduce a temporary variable V as the voltage at the node ‘o’. Then the current 

through the parallel combination of RB and RC would be equal to 
 
 
 

 

 
Then applying KCL at the node ‘o’ we get 
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Next applying KVL at input port we get V1 = I1.RA + V and V1/ I1 = RA + V / I1 Now using 

the value of V we obtained above in this expression for V1/ I1 we get 

 
 

 

 
Again from inspection of the figure above it is evident that 

 
 

 

Therefore 
 
 
 

 

 
2). Next we will find out h12 and h22 which are given by the common condition I1 = 0 (Input open 

circuited) 

Now since I1 is zero , the current source disappears and the circuit becomes simpler as shown in the figure 

below. 
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Now applying KVL at the output port we get: 
 
 
 

 

 
Again under this condition: 

 
 
 

Example 9 : Z parameters of the lattice network shown in the figure below. 
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First we shall redraw the given lattice network in a simpler form for easy analysis as shown below. 
 

 

 

We will then find out Z11 and Z21 which are given by the common condition I2 = 0 (Output open circuited ) 

 
 

It can be observed that the impedances in the two arms ‘ab’ and ‘xy’ are same i.e Z1 + Z2 and their parallel 

combination is ( Z1 + Z2 )/2 

Hence applying KVL at the input port we get 
 

 

Next we find that  
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( VC and VD being the potentials at points ‘c’ and ‘d’ ) 

It can also be observed from the simplified circuit that the currents I3 and I4 through the branches ‘ab’ 

and ‘xy’ are equal since the branch impedances are same and same voltage V1 is applied across both the 

branches. Hencethe current I divides equally as I3 and I4 

i.e I3 = I4 = I/2 

Now substituting these values of I3 and I4 in the expression for V2 above: 
 
 
 

 

 
As can be seen the circuit is both symmetrical and Reciprocal and hence : 
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Example 10: Find the transmission parameters of the following network (fig 12.51) 
 
 
 

 

 
First let us write down the basic ABCD parameter equations and give their definitions. 

 
 

V1 = A.V2 – B.I2 I1 

= C.V2 – D.I2 

 
 

A = V1/V2  with I2 = 0 

C =  I1/V2   with I2 = 0 

B = V1/−I2 with V2 = 0 

D = I1/−I2 with V2 = 0 

1).We will then find out A and C which are given by the common condition I2 = 0 (Output open circuited) 

 

The resulting circuit in this condition is redrawn below. 
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Applying KVL we can write down the two mesh equations and get the values of A and C : 
 
 
 

 

 

2.) Next we will find out B and D which are given by the common condition V2 = 0 (Output short circuited) 

 
 

The resulting simplified network in this condition is redrawn below. 
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The voltage at the input port is given by : V1 = I1 x1 + (I1 + I2) x2 

i.e. V1 = 3I1+2I2 …………. (i) 

And the mesh equation for the closed mesh through ‘cd’ is given by : 0 = I2 x1 

+ (I1 + I2) x2  or 3 I2 + 2 I1 = 0  or 

I1 = -(3/2). I2 ..………. (ii) 

Using equation (ii) in the equation (i) above we get : 
 
 
 

V1 = -(9/2) I2 + 2I2 = -(5/2)I2 

Or V1 /-I2 = B = (5/2) 
 

And from equation (ii) above we can directly get 
 
 

I1 /- I2 = D = 3/2 

 
 

Hence the transmission parameters can be written in matrix notation as : 
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Here we can see that AD – BC = 1 and A ≠ D 

 

 

Hence the network is Symmetrical but not Reciprocal. 

 

 

 

 

 

 

 



B.Tech (ECE) R-18 

Malla Reddy College of Engineering and Technology (MRCET) 

 

 

 

 

UNIT-III: 
Locus diagrams:  

➢ Resonance and Magnetic Circuits:  

➢ Locus diagrams – Series and Parallel RL, RC, RLC circuits with variation of 

various parameters –  

➢ Resonance-Series and Parallel circuits,  

➢ Concept of band width and quality factor. 

➢ Magnetic Circuits- Faraday’s laws of electromagnetic induction,  

➢ Concept of self and mutual inductance,  

➢ Dot convention, Coefficient of coupling, 

➢ Composite magnetic circuits,  

➢ Analysis of series and parallel magnetic circuits. 
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Locus Diagrams with variation of various parameters: 

Introduction: In AC electrical circuits the magnitude and phase of the current vector depends upon the values of R,L&C when the 

applied voltage and frequency are kept constant. The path traced by the terminus (tip) of the current vector when the parameters 

R,L&C are varied is called the current Locus diagram . Locus diagrams are useful in studying and understanding the behavior of the 

RLC circuits when one of these parameters is varied keeping voltage and frequency constant. 

In this unit, Locus diagrams are developed and explained for series RC,RL circuits and Parallel LC circuits along with their internal 

resistances when the parameters R,L and C are varied. 

The term circle diagram identifies locus plots that are either circular or semicircular. The defining equations of such circle 

diagrams are also derived in this unit for series RC and RL diagrams. 

In both series RC,RL circuits and parallel LC circuits resistances are taken to be in series with L and C to highlight the fact that all 

practical L and C components will have at least a small value of internal resistance. Series RL circuit with varying Resistance 

R: 

Refer to the series RL circuit shown in the figure (a) below with constant XL and varying R. The current IL lags behind the applied 

voltage V by a phase angle Ɵ = tan-1(XL/R) for a given value of R as shown in the figure (b) below. When R=0 we can see that the current 

is maximum equal to V/XL and lies along the I axis with phase angle equal to 900. When R is increased from zero to infinity the 

current gradually reduces from V/XL to 0 and phase angle also reduces from 900 to 0° 

As can be seen from the figure, the tip of the current vector traces the path of a semicircle 

With its diameter along the +ve I axis. 

 

Fig 4.1(a): Series RL circuit with Fig 4.1(b): Locus of current vector IL with variation of R 

Varying Resistance R
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The related equations are: 

IL = V/Z Sin Ɵ = XL/Z or Z = XL/ Sin Ɵ and Cos Ɵ = R / Z 

Therefore IL = (V/XL) Sin Ɵ 

For constant V and XL the above expression for IL is the polar equation of a circle with diameter (V/XL) as shown in 

the figure above. 

 

Circle equation for the RL circuit: (with fixed reactance and variable Resistance): 

 

The X and Y coordinates of the current IL are IX = IL 

Sin Ɵ IY = IL Cos Ɵ 

From the relations given above and earlier we get 

IX = (V/Z )( XL/Z) = V XL/Z2 -------- (1) 

and IY = (V/Z )( R/Z) = V R/Z2 -------- (2) 

Squaring and adding the above two equations we get 

 

I 2 + I 2 = V2(X 2+R2) / Z4 = (V2Z2 )/ Z4 = V2/Z2 -------- (3) 

X Y L 

From equation (1) above we have Z2 = V XL / IX and substituting this in the above equation (3) we get : 

IX
2 + IY

2 = V2/ (V XL / IX ) = (V/XL) IX or 

IX
2 + IY

2 − (V/XL) IX = 0 

Adding (V/2XL)2 to both sides ,the above equation can be written as 

[IX − V/2XL ]2+ IY
2 = (V/2XL)2 ----------- (4) 

Equation (4) above represents a circle with a radius of (V/2XL) and with it’s coordinates of the 

centre as (V/2XL , 0) 

 

Series RC circuit with varying Resistance R: 

 

Refer to the series RC circuit shown in the figure (a) below with constant XC and varying R. The current IC leads the  



B.Tech (ECE) R-18 

Malla Reddy College of Engineering and Technology (MRCET) 

 

 

 

applied voltage V by a phase angle Ɵ = tan-1(XC/R) for a given value of R as shown in the figure (b) below. When R=0 

we can see that the current is maximum equal to − V/XC and lies along the negative I axis with phase angle equal to − 

900. When R is increased from zero to infinity the current gradually reduces from −V/XC to 0 and phase angle 

also reduces from −900 to 00. As can be seen from the figure, the tip of the current vector traces the path of a semicircle 

but now with its diameter along the negative I axis. 

 

Circle equation for the RC circuit: (with fixed reactance and variable Resistance): 

 

In the same way as we got for the Series RL circuit with varying resistance we can get the circle equation for an RC 

circuit with varying resistance as : 

[IX + V/2XC ]2+ IY
2 = (V/2XC)2 

 

 

whose coordinates of the centre are (−V/2XC , 0) and radius equal to V/2XC 
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Fig 4.2 (a): Series RC circuit with Fig 4.2 (b): Locus of current vector IC 
Varying Resistance R  with variation of R 

 
Series RL circuit with varying Reactance XL: 

 
Refer to the series RL circuit shown in the figure (a) below with constant R and varying XL. The current IL 

lags behind the applied voltage V by a phase angle Ɵ = tan-1(XL/R) for a given value of R as shown in the 

figure (b) below. When XL =0 we can see that the current is maximum equal to V/R and lies along the +ve V 

axis with phase angle equal to 00. When XL is increased from zero to infinity the current gradually reduces 

from V/R to 0 and phase angle increases from 00 to 900. As can be seen from the figure, the tip of the 

current vector traces the path of a semicircle with its diameter along the +ve V axis and on to its 

right side. 
 

 

Fig 4.3(a): Series RL circuit with varying XL Fig 4.3(b) : Locus of current vector IL with variation of XL 
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Series RC circuit with varying Reactance XC: 

 
Refer to the series RC circuit shown in the figure (a) below with constant R and varying XC. The current IC 

leads the applied voltage V by a phase angle Ɵ= tan-1(XC/R) for a given value of R as shown in the figure 

(b) below. When XC =0 we can see that the current is maximum equal to V/R and lies along the V axis with 

phase angle equal to 00. When XC is increased from zero to infinity the current gradually reduces from V/R 

to 0 and phase angle increases from 00 to −900. As can be seen from the figure, the tip of the current vector 

traces the path of a semicircle with its diameter along the +ve V axis but now on to its left side. 
 

Fig 4.4(a): Series RC circuit with varying XC Fig 4.4(b): Locus of current vector IC with variation of XC 

 
Parallel LC circuits: 

Parallel LC circuit along with its internal resistances as shown in the figures below is considered here for 

drawing the locus diagrams. As can be seen, there are two branch currents IC and IL along with the total 

current I. Locus diagrams of the current IL or IC (depending on which arm is varied)and the total current I 

are drawn by varying RL, RC , XL and XC one by one. 

 

Varying XL: 
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The current IC through the capacitor is constant since RC and C are fixed and it leads the voltage vector OV 

by an angle ƟC = tan-1 (XC/RC) as shown in the figure (b). The current IL through the inductance is the vector 

OIL . It’s amplitude is maximum and equal to V/RL when XL is zero and it is in phase with the applied voltage 

V. When XL is increased from zero to infinity it’s amplitude decreases to zero and phase will be lagging the 

voltage by 900. In between, the phase angle will be lagging the voltage V by an angle ƟL = tan-1 (XL/RL). 

The locus of the current vector IL is a semicircle with a diameter of length equal to V/RL. Note that this is the 

same locus what we got earlier for the series RL circuit with XL varying except that here V is shown 

horizontally. 

Now, to get the locus of the total current vector OI we have to add vectorially the currents IC and IL . We 

know that to get the sum of two vectors geometrically we have to place one of the vectors staring point (we 

will take varying amplitude vector IL)at the tip of the other vector (we will take constant amplitude vector 

IC)and then join the start of fixed vector IC to the end of varying vector IL. Using this principle we can get 

the locus of the total current vector OI by shifting the IL semicircle starting point O to the end of current 

vector OIC keeping the two diameters parallel. The resulting semi circle ICIBT shown in the figure in dotted 

lines is the locus of the total current vector OI. 

 

 
 

 

Fig 4.5(b): Locus of current vector I in Parallel LC circuit when XL is varied from 0 to ∞ 

 

 

Varying XC: 
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Fig.4.6(a) parallel LC circuit with Internal Resistances RL and RC in series with L (fixed) and C 

(Variable) respectively. 

 

 
The current IL through the inductor is constant since RL and L are fixed and it lags the voltage vector OV 

by an angle ƟL = tan-1 (XL/RL) as shown in the figure (b). The current IC through the capacitance is the 

vector OIC . It’s amplitude is maximum and equal to V/RC when XC is zero and it is in phase with the applied 

voltage V. When XC is increased from zero to infinity it’s amplitude decreases to zero and phase will be 

leading the voltage by 900. In between, the phase angle will be leading the voltage V by an angle ƟC = tan-1 

(XC/RC). The locus of the current vector IC is a semicircle with a diameter of length equal to V/RC as shown 

in the figure below. Note that this is the same locus what we got earlier for the series RC circuit with XC 

varying except that here V is shown horizontally. 

Now, to get the locus of the total current vector OI we have to add vectorially the currents IC and IL . We 

know that to get the sum of two vectors geometrically we have to place one of the vectors staring point (we 

will take varying amplitude vector IC)at the tip of the other vector (we will take constant amplitude vector IL) 

and then join the start of the fixed vector IL to the end of varying vector IC. Using this principle we can get 

the locus of the total current vector OI by shifting the IC semicircle starting point O to the end of current 

vector OIL keeping the two diameters parallel. The resulting semicircle ILIBT shown in the figure in dotted 

lines is the locus of the total current vector OI. 
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Fig4.6 (b) : Locus of current vector I in Parallel LC circuit when XC is varied from 0 to ∞ 

 

Varying RL: 

 
The current IC through the capacitor is constant since RC and C are fixed and it leads the voltage vector OV by 

an angle ƟC = tan-1 (XC/RC) as shown in the figure (b). The current IL through the inductance is the vector 

OIL . It’s amplitude is maximum and equal to V/XL when RL is zero. Its phase will be lagging the voltage 

by 900. When RL is increased from zero to infinity it’s amplitude decreases to zero and it is in phase with 

the applied voltage V. In between, the phase angle will be lagging the voltage V by an angle ƟL = tan-1 

(XL/RL). The locus of the current vector IL is a semicircle with a diameter of length equal to V/RL. Note that 

this is the same locus what we got earlier for the series RL circuit with R varying except that here V is shown 

horizontally. 
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Fig. 4.7(a) parallel LC circuit with Internal Resistances RL (Variable) and RC (fixed) in series with L and C 
respectively. 

Now, to get the locus of the total current vector OI we have to add vectorially the currents IC and IL . We 

know that to get the sum of two vectors geometrically we have to place one of the vectors staring point (we 

will take varying amplitude vector IL)at the tip of the other vector (we will take constant amplitude vector 

IC)and then join the start of fixed vector IC to the end of varying vector IL. Using this principle we can get 

the locus of the total current vector OI by shifting the IL semicircle starting point O to the end of current 

vector OIC keeping the two diameters parallel. The resulting semicircle ICIBT shown in the figure in dotted 

lines is the locus of the total current vector OI. 
 

 
 

Fig 4.7(b) : Locus of current vector I in Parallel LC circuit when RL is varied from 0 to ∞ 

 

Varying RC: 
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Fig. 4.8(a) parallel LC circuit with Internal Resistances RL (fixed) and RC (Variable) in series 

with L and C respectively. 

 
The current IL through the inductor is constant since RL and L are fixed and it lags the voltage vector OV 

by an angle ƟL = tan-1 (XL/RL) as shown in the figure (b). The current IC through the capacitance is the 

vector OIC . It’s amplitude is maximum and equal to V/XC when RC is zero and its phase will be leading the 

voltage by 900 . When RC is increased from zero to infinity it’s amplitude decreases to zero and it will be 

in phase with the applied voltage V. In between, the phase angle will be leading the voltage V by an angle 

ƟC = tan-1 (XC/RC). The locus of the current vector IC is a semicircle with a diameter of length equal to V/XC 

as shown in the figure below. Note that this is the same locus what we got earlier for the series RC 

circuit with R varying except that here V is shown horizontally. 

 
Now, to get the locus of the total current vector OI we have to add vectorially the currents IC and IL . We 

know that to get the sum of two vectors geometrically we have to place one of the vectors staring point (we 

will take varying amplitude vector IC)at the tip of the other vector (we will take constant amplitude vector IL) 

and then join the start of the fixed vector IL to the end of varying vector IC. Using this principle we can get 

the locus of the total current vector OI by shifting the IC semicircle starting point O to the end of current 

vector OIL keeping the two diameters parallel. The resulting semicircle ILIBT shown in the figure in dotted 

lines is the locus of the total current vector OI. 



B.Tech (ECE) R-18 

Malla Reddy College of Engineering and Technology (MRCET) 

 

 

 
 

 

Fig 4.8(b) : Locus of current vector I in Parallel LC circuit when RC is varied from 0 to ∞ 

 

Resonance: 

Series RLC circuit: 

The impedance of the series RLC circuit shown in the figure below and the current I through the circuit are 

given by : 

Z = R + jωL +1 /jωC = R + j ( ωL − 1/ωC) I = 
Vs/Z 

 

Fig 4.9: Series RLC circuit 

The circuit is said to be in resonance when the Inductive reactance is equal to the Capacitive reactance. 

i.e. XL = XC or ωL = 1/ωC. (i.e. Imaginary of the impedance is zero) The frequency at which the 

resonance occurs is called resonant frequency. In the resonant condition when XL 

= XC they cancel with each other since they are in phase opposition(1800 out of phase) and net impedance of the circuit 

is purely resistive. In this condition the magnitudes of voltages across 
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the Capacitance and the Inductance are also equal to each other but again since they are of opposite 

polarity they cancel with each other and the entire applied voltage appears across the Resistance alone. 

Solving for the resonant frequency from the above condition of Resonance : ωL = 1/ωC 

2πfrL  = 1/2πfrC 

f 2 = 1/4π2LC and f = 1/2π√LC 

In a series RLC circuit, resonance may be produced by varying L or C at a fixed frequency or by varying 

frequency at fixed L and C. 

 
Reactance, Impedance and Resistance of a Series RLC circuit as a function of frequency: 

 
From the expressions for the Inductive and capacitive reactance we can see that when the frequency is 

zero, capacitance acts as an open circuit and Inductance as a short circuit. Similarly when the frequency is 

infinity inductance acts as an open circuit and the capacitance acts as a short circuit. The variation of 

Inductive and capacitive reactance along with Resistance R and the Total Impedance are shown plotted 

in the figure below. 

As can be seen, when the frequency increases from zero to ∞ Inductive reactance XL (directly proportional 

to ω) increases from zero to ∞ and capacitive reactance XC (inversely proportional to ω) decreases from 

−∞ to zero. Whereas, the Impedance decreases from ∞ to Pure Resistance R as the frequency 

increases from zero to fr ( as capacitive reactance reduces from 

−∞ and becomes equal to Inductive reactance ) and then increases from R to ∞ as the frequency 

increases from fr to ∞ (as inductive reactance increases from its value at resonant frequency to ∞ ) 
 

 

Fig 4.10: Reactance and Impedance plots of a Series RLC circuit 

 
Phase angle of a Series RLC circuit as a function of frequency: 
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Fig4.11 : Phase plot of a Series RLC circuit 

 
The following points can be seen from the Phase angle plot shown in the figure above: 

 
 At frequencies below the resonant frequency capacitive reactance is higher than the inductive reactance and 

hence the phase angle of the current leads the voltage. 

 As frequency increases from zero to fr the phase angle changes from -900 to zero. 

 At frequencies above the resonant frequency inductive reactance is higher than the capacitive reactance and 

hence the phase angle of the current lags the voltage. 

• As frequency increases from fr and approaches ∞, the phase angle increases from zero and approaches 900 

 
Band width of a Series RLC circuit: 

The band width of a circuit is defined as the Range of frequencies between which the output power is 

half of or 3 db less than the output power at the resonant frequency. These frequencies are called 

the cutoff frequencies, 3db points or half power points. But when we consider the output voltage or 

current, the range of frequencies between which the output voltage or current falls to 0.707 times of the 

value at the resonant frequency is called the Bandwidth BW. This is because voltage/current are 

related to power by a factor of √ 2 and when we are consider √ 2 times less it becomes 0.707. But still 

these frequencies are called as cutoff frequencies, 3db points or half power points. The lower end 

frequency is called lower cutoff frequency and the higher end frequency is called upper cutoff 

frequency. 
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Fig 4.12: Plot showing the cutoff frequencies and Bandwidth of a series RLC circuit 

 
Derivation of an expression for the BW of a series RLC circuit: 

 

We know that BW = f2 – f1 Hz 
 

If the current at points P1 and P2 are 0.707 (1/√ 2) times that of I max ( current at the resonant frequency) 

then the Impedance of the circuit at points P1 and P2 is √ 2 R ( i.e. √ 2 times the impedance at fr ) 

But Impedance at point P1 is given by: Z = √ R2 + (1/ω1C – ω1L )2 and equating this to √ 2 R 

 

ω2L – 1/ω2C )2 and equating this to 

 

Equating the above equations (1) and (2) we get: 

1/ω1C – ω1L = ω2L – 1/ω2C 

Rearranging we get L( ω1+ ω2)  =  1/C [( ω1+ ω2)/ ω1ω2]   i.e ω1ω2 = 1/LC 

But we already know that for a series RLC circuit the resonant frequency is given by ω 2 = 1/LC Therefore: 

ω1ω2 = ω 2 ---- (3) and 1/C = ω 2L ------ (4) 

Next adding the above equations (1) and (2) we get: 

1/ω1C – ω1L+ ω2L – 1/ω2C = 2R 

(ω2 – ω1)L + (1/ω1C – 1/ω2C) = 2R 

(ω2 – ω1)L + 1/C[(ω2 – ω1)/ω1ω2) = 2R ------ (5) 

Using the values of ω1ω2 and 1/C from equations (3) and (4) above into equation (5) above we get:

 (ω2 – ω1)L + ω 2L [(ω2 – ω1)/ ω 2) = 2R 

we get : (1/ω1C) – ω1L = R ------ (1) 

Similarly Impedance at point P2 is given b 

√ 2 R we get: ω2L – (1/ω2C) = R 

y: Z = √ 

------ 

R2 + ( 

(2) 
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i.e. 2L (ω2 – ω1) =  2R i.e.  (ω2 – ω1) =  R/L and (f2 – f1) =  R/2πL ----- (6) 

Or finally Band width BW = R/2πL ----- (7) 

Since fr lies in the centre of the lower and upper cutoff frequencies f1 and f2 using the above equation (6) 

we can get: 
 

f1 = fr – R/4πL ------ (8) 

f2 = fr + R/4πL ------ (9) 

Further by dividing the equation (6) above by fr on both sides we get another important 

relation : (f2 – f1) / fr = R/2π fr L or BW / fr = R/2π fr L ------- (10) 

Here an important property of a coil i.e. Q factor or figure of merit is defined as the ratio of the 

reactance to the resistance of a coil. 

Q = 2π fr L / R ------- (11) 

Now using the relation (11) we can rewrite the relation (10) as 

Q =  fr / BW ------- (12) 

 
 

Quality factor of a series RLC circuit: 
 

The quality factor of a series RLC circuit is defined as: 

Q = Reactive power in Inductor (or Capacitor) at resonance / Average power at Resonance 

 
 

Reactive power in Inductor at resonance = I2XL 

Reactive power in Capacitor at resonance = I2XC 

Average power at Resonance = I2R 

Here the power is expressed in the form I2X (not as V2/X) since I is common through R.L and C in the series 

RLC circuit and it gets cancelled during the simplification. 

Therefore Q = I2XL / I2R = I2XC / I2R 

i.e.  Q  =  XL / R  = ωr L/ R ------ (1) 

Or Q = XC / R = 1/ωr RC ------ (2) 

From these two relations we can also define Q factor as : 
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Q = Inductive (or Capacitive ) reactance at resonance / Resistance 

 

Substituting the value of ωr = 1/√LC in the expressions (1) or (2) for Q above we can get the value of Q 

in terms of R, L,C as below. 
 

Q  =  (1/√LC ) L/ R = (1/R) (√L/C) 

 

 
Selectivity: 

Selectivity of a series RLC circuit indicates how well the given circuit responds to a given resonant 

frequency and how well it rejects all other frequencies. i.e. the selectivity is directly proportional to Q factor. 

A circuit with a good selectivity (or a high Q factor) will have maximum gain at the resonant frequency and will 

have minimum gain at other frequencies .i.e. it will have very low band width. This is illustrated in the 

figure below. 
 
 
 

 

Fig 4.13: Effect of quality factor on bandwidth Voltage Magnification at resonance: 

 
At resonance the voltages across the Inductance and capacitance are much larger than the applied 

voltage in a series RLC circuit and this is called voltage magnification at Resonance. The voltage 

magnification is equal to the Q factor of the circuit. This is proven below. 

If we take the voltage applied to the circuit as V and the current through the circuit at resonance 

as I then 

The voltage across the inductance L is: VL = IXL = (V/R) ωr L and 

The voltage across the capacitance C is: VC = IXC = V/R ωr C 

But we know that the Q of a series RLC circuit = ωr L/ R = 1/R ωr C Using these relations in the expressions for VL and 

VC given above we get VL = VQ and VC =VQ 

The ratio of voltage across the Inductor or capacitor at resonance to the applied voltage in a series RLC 

circuit is called Voltage magnification and is given by 
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Magnification = Q = VL/V or VC / V 
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Important points In Series RLC circuit at resonant frequency : 

 
 The impedance of the circuit becomes purely resistive and minimum i.e Z = R 

 The current in the circuit becomes maximum 

 The magnitudes of the capacitive Reactance and Inductive Reactance become equal 

 The voltage across the Capacitor becomes equal to the voltage across the Inductor at resonance and is Q times 

higher than the voltage across the resistor 

 

Bandwidth and Q factor of a Parallel RLC circuit: 

 
Parallel RLC circuit is shown in the figure below. For finding out the BW and Q factor of a parallel 

RLC circuit, since it is easier we will work with Admittance , Conductance and Susceptance 

instead of Impedance ,Resistance and Reactance like in series RLC circuit. 
 

 
 

Fig 4.14 : Parallel RLC circuit 

 
Then we have the relation: Y = 1/Z = 1/R + 1/jωL + jωC = 1/R + j ( ωC − 1/ωL) 

 
For the parallel RLC circuit also, at resonance, the imaginary part of the Admittance is zero and hence the 

frequency at which resonance occurs is given by: ωrC − 1/ωrL = 0 . From this we get : ωrC = 

1/ωrL and ωr = 1/√LC 

which is the same value for ωr as what we got for the series RLC circuit. 

 
At resonance when the imaginary part of the admittance is zero the admittance becomes 

minimum.( i.e Impedance becomes maximum as against Impedance becoming minimum in series 

RLC circuit ) i.e. Current becomes minimum in the parallel RLC circuit at resonance ( as against current 

becoming maximum in series RLC circuit) and increases on either side of the resonant frequency as 

shown in the figure below. 
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Fig 4.15: Variation of Impedance and Current with frequency in a Parallel RLC circuit 

 
Here also the BW of the circuit is given by BW = f2-f1 where f2 and f1 are still called the upper and lower cut 

off frequencies but they are 3db higher cutoff frequencies since we notice that at these cutoff frequencies 

the amplitude of the current is √2 times higher than that of the amplitude of current at the resonant 

frequency. 

The BW is computed here also on the same lines as we did for the series RLC circuit: 
 

If the current at points P1 and P2 is √ 2 (3db) times higher than that of Imin( current at the resonant 

frequency) then the admittance of the circuit at points P1 and P2 is also √ 2 times higher than the 

admittance at fr ) 

But amplitude of admittance at point P1 is given by: Y = √ 1/R2 + (1/ω1L - ω1C )2 and equating this to √ 2 /R 

we get 

1/ω1L − ω1C = 1/R ------- (1) 

Similarly amplitude of admittance at point P2 is given by: Y = √ 1/R2 + (ω2C − 1/ω2L)2 and equating this 

to √ 2 /R we get 

ω2C − 1/ω2L = 1/R ------- (2) 

Equating LHS of (1) and (2) and further simplifying we get 

1/ω1L − ω1C =  ω2C − 1/ω2L 

1/ω1L + 1/ω2L = ω1C  + ω2C 

1/L [(ω1 + ω2)/ ω1ω2] = (ω1 + ω2)C 

1/L C   = ω1ω2 
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Next adding the equations (1) and (2) above and further simplifying we get 
 

1/ω1L – ω1C + ω2C − 1/ω2L = 2/R 

(ω2C – ω1C) + (1/ω1L – 1/ω2L) = 2/R 

(ω2 – ω1)C + 1/L [(ω2 – ω1)/ ω1ω2] = 2/R 

Substituting the value of ω1ω2 = 1/LC 

(ω2 − ω1)C + LC/L [(ω2 − ω1)] = 2/R 

(ω2 − ω1)C + C [(ω2 − ω1)] = 2/R 2 C 

[(ω2 − ω1)] = 2/R 

Or [(ω2 − ω1)] = 1/RC 

From which we get the band width BW = f2-f1 = 1/2π RC 

Dividing both sides by fr we get : (f2-f1)/ fr = 1/2π fr RC ------(1) 

Quality factor of a Parallel RLC circuit: 

 
 

The quality factor of a Parallel RLC circuit is defined as: 

Q = Reactive power in Inductor (or Capacitor) at resonance / Average power at Resonance 
 

Reactive power in Inductor at resonance = V2/XL 

Reactive power in Capacitor at resonance = V2/XC 

Average power at Resonance = V2/R 

Here the power is expressed in the form V2/X (not as I2X as in series circuit) since V is common across R,L 

and C in the parallel RLC circuit and it gets cancelled during the simplification. 

Therefore Q = (V2/XL) / (V2/R) = (V2/XC) / (V2/R) 

i.e. Q = R/ XL = R /ωr L ----- (1) 

Or Q =  R/ XC = ωr RC ----- (2) 

From these two relations we can also define Q factor as : 
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Q = Resistance /Inductive (or Capacitive ) reactance at resonance 
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Substituting the value of ωr = 1/√LC in the expressions (1) or (2) for Q above we can get the value of Q 

in terms of R, L,C as below. 
 

Q  =  (1/√LC ) RC = R (√C/L) 

Further using the relation Q = ωr RC ( equation 2 above ) in the earlier equation (1) we got in BW viz. (f2-f1)/ fr = 

1/2π fr RC we get : (f2-f1)/ fr = 1/Q or Q = fr / (f2-f1) = fr / BW 

i.e. In Parallel RLC circuit also the Q factor is inversely proportional to the BW. 
 
 

Admittance, Conductance and Susceptance curves for a Parallel RLC circuit as a function of frequency : 

• The effect of varying the frequency on the Admittance, Conductance and Susceptance of a parallel circuit is 

shown in the figure below. 

• Inductive susceptance BL is given by BL = - 1/ωL. It is inversely proportional to the frequency ω 

and is shown in the in the fourth quadrant since it is negative. 

• Capacitive susceptance BC is given by BC = ωC. It is directly proportional to the frequency ω 

and is shown in the in the first quadrant as OP .It is positive and linear. 

• Net susceptance B = BC - BL and is represented by the curve JK. As can be seen it is zero at the resonant frequency fr 

• The conductance G = 1/R and is constant 

• The total admittance Y and the total current I are minimum at the resonant frequency as shown by the curve VW 
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Fig 4.16: Conductance, Susceptance and Admittance plots of a Parallel RLC circuit Current 

magnification in a Parallel RLC circuit: 

Just as voltage magnification takes place across the capacitance and Inductance at the resonant frequency in 

a series RLC circuit, current magnification takes place in the currents through the capacitance and 

Inductance at the resonant frequency in a Parallel RLC circuit. This is shown below. 

Voltage across the Resistance = V = IR 

Current through the Inductance at resonance IL = V/ ωr L = IR / ωr L = I . R/ ωr L = I Q Similarly 

Current through the Capacitance at resonance IC = V/ (1/ωr C ) = IR / (1/ωr C ) = I(R ωr C) = I Q 

From which we notice that the quality factor Q = IL / I or IC / I and that the current through the inductance 

and the capacitance increases by Q times that of the current through the resistor at resonance. . 

Important points In Parallel RLC circuit at resonant frequency : 

• The impedance of the circuit becomes resistive and maximum i.e Z = R 

• The current in the circuit becomes minimum 

• The magnitudes of the capacitive Reactance and Inductive Reactance become equal 

• The current through the Capacitor becomes equal and opposite to the current through the Inductor at resonance 

and is Q times higher than the current through the resistor 

Magnetic Circuits: 
 

Introduction to the Magnetic Field: 

 

Magnetic fields are the fundamental medium through which energy is converted from one form to another in 

motors, generators and transformers. Four basic principles describe how magnetic fields are used 

in these devices. 

0. A current-carrying conductor produces a magnetic field in the area around it. 

Explained in Detail by Fleming’s Right hand rule and Amperes Law. 

1. A time varying magnetic flux induces a voltage in a coil of wire if it passes through that coil. (basis of 

Transformer action) 

Explained in detail by the Faradays laws of Electromagnetic Induction. 

2. A current carrying conductor in the presence of a magnetic field has a force induced in it ( Basis of Motor action) 

3. A moving wire in the presence of a magnetic field has a voltage induced in it ( Basis of Generator action) 
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We will be studying in this unit the first two principles in detail and the other two principles in the next unit 

on DC machines. 

Two basic laws governing the production of a magnetic field by a current carrying conductor : 
 

The direction of the magnetic field produced by a current carrying conductor is given by the 

Flemings Right hand rule and its’ amplitude is given by the Ampere’s Law. 

Flemings right hand rule: Hold the conductor carrying the current in your right hand such that 

the Thumb points along the wire in the direction of the flow of current, then the fingers will 

encircle the wire along the lines of the Magnetic force. 

 

Ampere’s Law : The line integral of the magnetic field intensity H around a closed magnetic 

path is equal to the total current enclosed by the path. 

 

 
This is the basic law which gives the relationship between the Magnetic field Intensity H and the current I 

and is mathematically expressed as 

  𝑯. 𝒅𝒍 = I net 

where H is the magnetic field intensity produced by the current Inet and dl is a differential element of 

length along the path of integration. H is measured in Ampere-turns per meter. 

Important parameters and their relation in magnetic circuits : 

• Consider a current carrying conductor wrapped around a ferromagnetic core as shown in the figure below . 
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• Applying Ampere’s law, the total amount of magnetic field induced will be proportional to the amount of current 

flowing through the conductor wound with N turns around the ferromagnetic material as shown. Since the 

core is made of ferromagnetic material, it is assumed that a majority of the magnetic field will be confined to the 

core. 

• The path of integration in this case as per the Ampere’s law is the mean path length of the core, lC. The current passing 

within the path of integration Inet is then Ni, since the coil of wire cuts the path of integration N times while carrying 

the current i. Hence Ampere’s Law becomes : Hlc = Ni 

Therefore H  =  Ni/lc 

 
 

• In this sense, H (Ampere turns per meter) is known as the effort required to induce a magnetic field. The strength of the 

magnetic field flux produced in the core also depends on the material of the core. Thus: B = µH where 

B = magnetic flux density [webers per square meter, or Tesla (T)] 

μ= magnetic permeability of material (Henrys per meter) 

H = magnetic field intensity (ampere-turns per meter) 

• The constant µ may be further expanded to include relative permeability which can be defined as below: 

µ r = µ /µo 
 

where µo = permeability of free space (equal to that of air) 

• Hence the permeability value is a combination of the relative permeability and the permeability of free space. The value 

of relative permeability is dependent upon the type of material used. The higher the amount permeability, the higher the 

amount of flux induced in the core. Relative permeability is a convenient way to compare the magnetizability of 

materials. 

• Also, because the permeability of iron is so much higher than that of air, the majority of the flux in an iron core remains 

inside the core instead of travelling through the surrounding air, which has lower permeability. The small leakage 

flux that does leave the iron core is important in 
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determining the flux linkages between coils and the self-inductances of coils in transformers and motors. 

• In a core such as shown in the figure above 

B  =  µH  = µ Ni/lc 
 

Now, to measure the total flux flowing in the ferromagnetic core, consideration has to be made in 

terms of its cross sectional area (CSA). Therefore: 

 

Φ = 𝑩. 𝒅𝑨 where: A = cross sectional area throughout the core. 

Assuming that the flux density in the ferromagnetic core is constant throughout hence the equation 

simplifies to: Φ = B.A 

Taking the previous expression for B we get Φ = µ NiA/lc 

 
 

Electrical analogy of magnetic circuits: 
 

The flow of magnetic flux induced in the ferromagnetic core is analogous to the flow of electric current in an 

electrical circuit hence the name magnetic circuit. 

 

 
The analogy is as follows: 

 
 
 

 

 
(a) Electric Circuit (b) Electrical Analogy of Magnetic Circuit 
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Referring to the magnetic circuit analogy, F is denoted as magnetomotive force (mmf) which is similar to 

Electromotive force in an electrical circuit (emf). Therefore, we can say that F is the force which pushes magnetic 

flux around a ferromagnetic core with a value of Ni (refer to ampere’s law). Hence F is measured in ampere turns. 

Hence the magnetic circuit equivalent equation is as shown: 

F = Ø.R (similar to V=IR) 
 

We already have the relation Φ = µ NiA/l and using this we get R = F / Φ = Ni/ Φ 

R = Ni /( µ NiA/l) = l/ µ A 

• The polarity of the mmf will determine the direction of flux. To easily determine the direction of flux, the ‘right 

hand curl’ rule is applied: 

When the direction of the curled fingers indicates the direction of current flow the resulting thumb direction 
will show the magnetic flux flow. 

• The element of R in the magnetic circuit analogy is similar in concept to the electrical resistance. It is 

basically the measure of material resistance to the flow of magnetic flux. Reluctance in this analogy obeys the 

rule of electrical resistance (Series and Parallel Rules). Reluctance is measured in Ampere-turns per weber. 

• The inverse of electrical resistance is conductance which is a measure of conductivity of a material. Similarly the 

inverse of reluctance is known as permeance P which represents the degree to which the material permits the 

flow of magnetic flux. 

 

 
• By using the magnetic circuit approach, calculations related to the magnetic field in a ferromagnetic 

material are simplified but with a little inaccuracy. 

 

 

Equivalent Reluctance of a series Magnetic circuit : Reqseries = R1 + R2 + R3 + …. 

 
 

Equivalent Reluctance of a Parallel Magnetic circuit: 1/Reqparallel = 1/R1 + 1/R2 + 1/R3 + …. 

Electromagnetic Induction and Faraday’s law – Induced Voltage from a Time-Changing 

Magnetic Field: 

Faraday’s Law: 
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Whenever a varying magnetic flux passes through a turn of a coil of wire, voltage will be 

induced in the turn of the wire that is directly proportional to the rate of change of the flux 

linkage with the turn of the coil of wire. 

eind ∝ −dØ/dt 



B.Tech (ECE) R-18 

Malla Reddy College of Engineering and Technology (MRCET) 

 

 

 

eind = −𝒌. dØ/dt 

The negative sign in the equation above is in accordance to Lenz’ Law which states: 

The direction of the induced voltage in the turn of the coil is such that if the coil is short 

circuited, it would produce a current that would cause a flux which opposes the original change 

of flux. 

And k is the constant of proportionality whose value depends on the system of units chosen. In the SI 

system of units k=1 and the above equation becomes: 

eind = − dØ/dt 

Normally a coil is used with several turns and if there are N number of turns in the coil with the same amount 

of flux flowing through it then: eind = − 𝑵 dØ/dt 

 
 

Change in the flux linkage NØ of a coil can be obtained in two ways: 

 

1. Coil remains stationary and flux changes with time (Due to AC current like in Transformers and this is called 

Statically induced e.m.f ) 

2. Magnetic flux remains constant and stationary in space, but the coil moves relative to the magnetic field so as to 

create a change in the flux linkage of the coil ( Like in Rotating machines and this is a called Dynamically induced 

e.m.f. 

Self inductance: 
 

From the Faradays laws of Electromagnetic Induction we have seen that an e.m.f will be induced in a 

conductor when a time varying flux is linked with a conductor and the amplitude of the induced e.m.f is 

proportional to the rate of change of the varying flux. 

If the time varying flux is produced by a coil of N turns then the coil itself links with the time varying flux 

produced by itself and an emf will be induced in the same coil. This is called self inductance . 

The flux Ø produced by a coil of N turns links with its own N turns of the coil and hence the total flux linkage is 

equal to NØ = (μ N2 A / l) I [using the expression Φ = µ NiA/l we already developed] Thus we see 

that the total magnetic flux produced by a coil of N turns and linked with itself is proportional to the current 

flowing through the coil i.e. 

NØ ∝ 𝑰 or  NØ  = L 𝑰 

From the Faradays law of electromagnetic Induction, the self induced e.m.f for this coil of N turns is 

given by: 
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eind = − 𝑵 dØ/dt = −L dI/dt 
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The constant of proportionality L is called the self Inductance of the coil or simply Inductance and its 

value is given by L = (μ N2 A / l). If the radius of the coil is r then: 

L = (μ N2 πr2 / l) i 

From the above two equations we can see that Self Inductance of a coil can be defined as the flux 

produced per unit current i.e Weber/Ampere (equation1) or the induced emf per unit rate of change of 

current i.e Volt-sec/Ampere (equation 2 ) 

The unit of Inductance is named after Joseph Henry as Henry and is given to these two 

combinations as : 

1H = 1WbA-1 = 1VsA-1 

Self Inductance of a coil is defined as one Henry if an induced emf of one volt is generated when 

the current in the coil changes at the rate of one Ampere per second. 

Henry is relatively a very big unit of Inductance and we normally use Inductors of the size of mH ( 10-3 H) or 

μH (10-3H) 

Mutual inductance and Coefficient of coupling: 
 

In the case of Self Inductance an emf is induced in the same coil which produces the varying magnetic 

field. The same phenomenon of Induction will be extended to a separate second coil if it is located in the 

vicinity of the varying magnetic field produced by the first coil. Faradays law of electromagnetic Induction 

is equally applicable to the second coil also. A current flowing in one coil establishes a magnetic flux about 

that coil and also about a second coil nearby but of course with a lesser intensity. The time-varying flux 

produced by the first coil and surrounding the second coil produces a voltage across the terminals of the 

second coil. This voltage is proportional to the time rate of change of the current flowing through the 

first coil. 

Figure (a) shows a simple model of two coils L1 and L2, sufficiently close together that the flux produced by 

a current i1(t) flowing through L1 establishes an open-circuit voltage v2(t) across the terminals of 

L2.Mutual inductance,M21, is defined such that 

v2(t) = M21di1(t)/dt ------[1] 
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Figure 4.17 (a) A current i1 through L1 produces an open-circuit voltage v2across L2. (b) A current i2 
through L2 produces an open-circuit voltage v1 across L1. 

 
 

The order of the subscripts on M21 indicates that a voltage response is produced at L2 by a current 

source at L1. If the system is reversed, as indicated 

in fig.(b) then we have 

v1(t) = M12di2(t)/dt ---------------[2] 

 

It can be proved that the two mutual inductances M12 and M21 are equal and thus, M12 = M21 = 

M. The existence of mutual coupling between two coils is indicated by a double-headed arrow, as shown in 

Fig. (a )and (b) 

Mutual inductance is measured in Henrys and, like resistance, inductance, and capacitance, is a positive 

quantity. The voltage M di/dt, however, may appear as either a positive or a negative quantity depending 

on whether the current is increasing or decreasing at a particular instant of time. 
 

Coefficient of coupling k : Is given by the relation M = k√L1 L2 and its value lies between 0 and 

1. It can assume the maximum value of 1 when the two coils are wound on the same core such that flux 

produced by one coil completely links with the other coil. This is possible in well designed cores with 

high permeability. Transformers are designed to achieve a coefficient of coupling of 1. 

 

 

Dot Convention: 

 
 

The polarity of the voltage induced in a coil depends on the sense of winding of the coil. In the case of 

Mutual inductance it is indicated by use of a method called “dot convention”. The dot 
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convention makes use of a large dot placed at one end of each of the two coils which are mutually 

coupled. Sign of the mutual voltage is determined as follows: 

A current entering the dotted terminal of one coil produces an open circuit voltage with a positive voltage 
reference at the dotted terminal of the second coil. 

Thus in Fig(a) i1 enters the dotted terminal of L1, v2 is sensed positively at the dotted terminal of 

L2, and v2 = M di1/dt . 

It may not be always possible to select voltages or currents throughout a circuit so that the passive sign 

convention is everywhere satisfied; the same situation arises with mutual coupling. For example, it may be 

more convenient to represent v2 by a positive voltage reference at the undotted terminal, as shown in Fig 

(b). Then v2 = −M di1/dt . Currents also may not always enter the dotted terminal as indicated by Fig (c) 

and (d). Then we note that: 

A current entering the undotted terminal of one coil provides a voltage that is positively sensed at the 

undotted terminal of the second coil. 
 

 

 
Figure 4.18 : (a) and (b) Current entering the dotted terminal of one coil produces a voltage that is 

sensed positively at the dotted terminal of the second coil. (c) and (d) Current entering the undotted 

terminal of one coil produces a voltage that is sensed positively at the undotted terminal of the second 

coil. 

Important Concepts and formulae: 

Resonance and Series RLC circuit: 

ωr
2 = ω1ω2 = 1/LC ∴ ωr = √ω1ω2 = 1/√LCBW = R/2πL 
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Q = ωr L / R = 1/ ωr RC and in terms of R,L and C = (1/R) (√L/C) 

Q = fr / BW i.e. inversely proportional to the BW 

Voltage magnification Magnification  =  Q  =  VL/V or  VC / V 
 

Important points In Series RLC circuit at resonant frequency: 

• The impedance of the circuit becomes purely resistive and minimum i.e Z = R 

• The current in the circuit becomes maximum 

• The magnitudes of the capacitive Reactance and Inductive Reactance become equal 

• The voltage across the Capacitor becomes equal to the voltage across the Inductor at resonance and is Q 

times higher than the voltage across the resistor 

Resonance and Parallel RLC circuit: 

 
ωr

2 = ω1ω2 = 1/LC ∴  ωr =  √ω1ω2 = 1/√LC same as in series RLC circuit 

BW = 1/2π RC 

 
Q  =  R /ωr L =  ωr RC and in terms of R, L and C = R (√C/L) [ Inverse of what we got in 

Series RLC circuit] 

Q = fr / BW In Parallel RLC also inversely proportional to the BW 
 

Current Magnification = Q = IL/I or IC / I 
 

Important points In Parallel RLC circuit at resonant frequency : 

• The impedance of the circuit becomes resistive and maximum i.e Z = R 

• The current in the circuit becomes minimum 

• The magnitudes of the capacitive Reactance and Inductive Reactance become equal 

• The current through the Capacitor becomes equal and opposite to the current through the Inductor at resonance 

and is Q times higher than the current through the resistor 

Magnetic circuits : 
 

Ampere’s Law:   𝑯. 𝒅𝒍 = I net and in the case of a simple closed magnetic path of a 

ferromagnetic material it simplifies to Hl = Ni or H = Ni/l 
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Magnetic flux density:  

B = μH 

Magnetic field intensity: H = Ni/l 

Total magnetic flux intensity: Ø = BA = μHA = μ Ni A / l 
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Reluctance of the magnetic circuit: R = mmf/Flux = Ni/ Ø = l/μA 

 
 

Faradays law of electromagnetic Induction: 

 
 

Self induced e.m.f of a coil of N turns is given by: eind = − 𝑵 dØ/dt = −L dI/dt where L is the 

inductance of the coil of N turns with radius r and given by L = (μ N2 πr2 / l) i 

Equivalent Reluctance of a series Magnetic circuit: Reqseries = R1 + R2 + R3 + …. 

Equivalent Reluctance of a Parallel Magnetic circuit:  1/Reqparallel = 1/R1 + 1/R2 + 1/R3 + .. 

Coefficient of coupling k Is given by the relation:  M = k√L1 L2 

 

Illustrative examples: 

 

Example 1: A toroidal core of radius 6 cms is having 1000 turns on it. The radius of cross section of the core 

1cm.Find the current required to establish a total magnetic flux of 0.4mWb.When 

(a) The core is nonmagnetic 

(b) The core is made of iron having a relative permeability of 4000 

 

Solution: 

 

This problem can be solved by the direct application of the following formulae we know in magnetic 

circuits: B = Φ/A = µH and H = Ni/l 

Where 
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B = magnetic flux density (Wb/mtr2 ) Φ = Total magnetic flux 

(Wb)) 
 

A = Cross sectional area of the core(mtr2) µ = µrµ0 = Permeability 

(Henrys/mtr) µr = Relative permeability of the material ( Dimensionless) 
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µ0 = free space permeability = 4π x 10-7 Henrys/mtr 

H = Magenetic field intensity AT/mtr N = Number of turns of the coil 

i = Current in the coil (Amps) l = Length of the coil 

(mtrs) 

from the above relations we can get i as 
 

i = H l/N = (1/ µ )(Φ/A ) l / N = (1/ µ )(Φ/ N) l / A = (1/ µ )(Φ/ N) * 2πrT / π r 2 ] = [ 2r Φ / 

µ N r 2 ] 

 

Where rT is the radius of the toroid and rC is the radius of cross section of the coil 

Now we can calculate the currents in the two cases by substituting the respective values. (a) Here µ = 

µ0. Therefore i = ( 2 x 6 x 10-2 x 4 x 10-4 )/ (4π x 10-7 x 1000 x 10-4) = 380 Amps 

(b) Here µ = µrµ0. Therefore i = ( 2 x 6 x 10-2 x 4 x 10-4 )/ (4000 x4π x 10-7 x 1000 x 10-4) = 0.095 Amps 

Ex.2: (a) Draw the electrical equivalent circuit of the magnetic circuit shown in the figure below. The area of 

the core is 2x2 cm2 .The length of the air gap is 1cm and lengths of the other limbs are shown in the figure. 

The relative permeability of the core is 4000. 

(b) Find the value of the current ‘i’ in the above example which produces a flux density of 1.2 Tesla in the air 

gap . The number f turns of the coil are 5000. 
 

 

Solution: (a) 

 

To draw the equivalent circuit we have to find the Reluctances of the various flux paths independently. 

The reluctance of the path abcd is given by: R1 = length of the path abcd /µrµ0A 
 

= (32x10-2) / (4π x 10-7 x 4000 x 4 x 10-4) =1.59 x 105 AT/Wb 
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The reluctance of the path afed is equal to the reluctance of the path abcd since it has the same length, 

same permeability and same cross sectional area. Thus R1 = R2 

Similarly the reluctance of the path ag (R3) is equal to that of the path hd (R4) and can be calculated 

as:     R3 = R4 =  (6.5 x 10-2) / (4π x 10-7 x 4000 x 4 x 10-4) = 0.32 x 105 

AT/Wb 

The reluctance of the air gap path gh RG can be calculated as : RG = length of the air gap path 

gh/µ0A 

 

( Here it is to be noted that µ is to be taken as µ0 only and µr should not be included) RG = (1 x 

10-2) / (4π x 10-7 x 4 x 10-4 ) = 198.94 x 105 AT/Wb 

The equivalent electrical circuit is shown in the figure below with the values of the reluctances as given 

below the circuit diagram. 
 

 

R1 = R2 = 1.59x105 AT/Wb R3 = R4 =  0.32x105 AT/Wb RG = 198.94x105 

AT/Wb 
 

Solution: (b) This problem is solved in the following steps: 

 

1. First the flux through the air gap ΦG is found out. The flux in the air gap ΦGis given by the product 

of the Flux density in the air gap B and the cross sectional area of the core in that region A . Hence ΦG = B.A = 

1.2 x 4 x 10-4 = 0.00048 Wb 

It is to be noted here that the same flux would be passing through the reluctances R3,RG & 

R4 

2. Next,the Flux in the path afed Φ2 is to be found out . This can be found out by noticing that the mmf 

across the reluctance R2 is same as the mmf across the sum of the reluctances R3,RG, and R4 coming in parallel with 

R4 . Hence by equating them we get 
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ΦG ( R3 + RG + R4 ) = Φ2 R2 from which we get Φ2 = ΦG (R3 + RG + R4 ) / R2 

 

Hence Φ2 = [0.00048 x ( 0.32 + 198.94 + 0.32)x105 ] / 1.59x105 = 0.06025 Wb 
 

1. Next , the total flux Φ flowing through the reluctance of the path abcd R1 produced by the 

winding is to be found out. This is the sum of the air gap flux ΦG and the flux in the outer limb of the core Φ2 : 

i.e Φ = ΦG + Φ2 = (0.00048 + 0.06025) = 0.0607 Wb 

2. Next , The total mmf F given by F = Ni is to be found out . This is also equal to the sum of the mmfs 

across the reluctances R1 and R2 [or (R3 + RG + R4 )] = Φ R1 + Φ2 R2 from which we can get ‘i’ as : ‘i’ = (Φ 

R1 + Φ2 R2 ) / N = [0.0607 x 1.59x105 + 0.06025 x 1.59x105]/5000 = 3.847 Amps 

is  =  3.847 Amps 
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UNIT-IV TRANSMISSION LINES-I 

➢ Types of transmission lines 

➢ Transmission line Parameters- Primary & Secondary Constants 

➢ Transmission Line Equations 

➢ Expressions for Characteristics Impedance 

➢ Propagation Constant 

➢ Phase and Group Velocities 

➢ Infinite Line Concepts 

➢ Lossless transmission line 

➢ Distortion 

➢ Condition for Distortionlessness transmission 

➢ Minimum Attenuation 

➢ Illustrative Problems. 
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UNIT – V 

Transmission Lines – II 

 
➢ SC and OC Lines 

➢ Input Impedance Relations 

➢ Reflection Coefficient 

➢ VSWR 

➢ λ/4, λ 2, λ /8 Lines - Impedance Transformations 

➢ Smith Chart - Configuration and Applications, 

➢ Single Stub Matching 

➢ Illustrative Problems. 
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Transmission Lines – Smith Chart & 
Impedance Matching (Intensive 

Reading) 

 

1 The Smith Chart 

Transmission line calculations − such as the determination of input impedance using equation 

(4.30) and the reflection coefficient or load impedance from equation (4.32) − often involves 

tedious manipulation of complex numbers. This tedium can be alleviated using a graphical 

method of solution. The best known and most widely used graphical chart is the Smith chart. 

The Smith chart is a circular plot with a lot of interlaced circles on it. When used correctly, 

impedance matching can be performed without any computation. The only effort required is 

the reading and following of values along the circles. 

 
The Smith chart is a polar plot of the complex reflection coefficient, or equivalently, a 

graphical plot of normalized resistance and reactance functions in the reflection-coefficient 

plane. To understand how the Smith chart for a lossless transmission line is constructed, 

examine the voltage reflection coefficient of the load impedance defined by 

 = 
Vrefl 

= 
ZL − Z0  

=  + j 

  

, (1) 

Vinc ZL + Z0 
re im 

where re and im are the real and imaginary parts of the complex reflection coefficient L . 

The characteristic impedance Z0 is often a constant and a real industry normalized value, such 

as 50 , 75 , 100 , and 600 . We can then define the normalised load impedance by 

zL  = ZL / Z0  = (R +  jX ) / Z0  = r + jx . (2) 

With this simplification, we can rewrite the reflection coefficient formula in (1) as 

   =    + j = 
(ZL  − Z0 ) / Z0   

= 
zL  − 1 

. (3) 
  

L re im (ZL + Z0 ) / Z0 zL + 1 

 

The inverse relation of (3) is 

 
 
 

or 

 
z = 

1 + L =
 

L 
1 −  

 

 
 

(4) 

r +  j x = 
(1 + re ) + jim  . (5) 

(1 − re ) − jim 

Multiplying both the numerator and the denominator of (5) by the complex conjugate of the 

denominator and separating the real and imaginary parts, we obtain 

1 + L  e j 

1 − L  e j 
L 

L 
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im 

 

 

 

 

 

1 − re
2 
− im

2
 

 

 
 

and 

r = 

(1 − re )
2 + im

2
 

 
2 2 

x = 

(1 − re )
2 + im

2
 

(6) 

 
 

. (7) 

 

Equation (6) can be rearranged 

as 

 

 
r 2 

 
 1 2 

 re −    + im
2 
=   

  

. (8) 

 1 + r   1 + r  
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  

 

 

 

 

 

This equation is a relationship in the form of a parametric equation (x − a) 2 + ( y − b) 2 = R 2 

in the complex plane ( ,  )  of a circle centred at the coordinates 
   r  

and having a 

 
 

re im  
r + 1 

,0 
 

radius of 1 

 
 

r + 1 

. Different values of r yield circles of different radii with centres at different 

positions on the re -axis. The following properties of the r-circles are noted: 

• The centres of all r-circles lie on the re -axis. 

• The circle where there is no resistance (r = 0) is the largest. It is centred at the origin and 

has a radius of 1. 

• The r-circles become progressively  smaller as r increases from 0 to , ending at the     

(re = 1, im = 0) point for an open circuit. 

• All the r-circles pass through the point (re = 1, im = 0) . 

See Figure 1 for further details. 

 

 

Figure 1: The r-circles in the complex plane (re , im ) . 

 

Similarly, (7) can be rearranged as  
 1 2 

 
 1 2 

(re − 1)2 +  im −    =    . (9) 

 x   x  

Again, (9) is a parametric equation of the type (x − a) 2 + ( y − b) 2 = R 2 in the complex plane 

 

r =  

(open) 

re 1 0.5 0 

r = 1 

im 

r = 0 (short) 
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( ,  ) of a circle centred at the coordinates 


1, 
1  

and having a radius of 
1 

. Different 

r i  x x 

  

values of x yield circles of different radii with centres at different positions on the re = 1 

line. The following properties of the x-circles are noted: 

• The centres of all x-circles lie on the re = 1 line; those for x  0 (inductive reactance) lie 

above the re -axis, and those for x  0 lie below the re -axis. 

• The x = 0 circle becomes the re -axis. 

• The x-circles become progressively smaller as x increases from 0 to , ending at the 

(re = 1, im = 0) point for an open circuit. 

• All the x-circles pass through the point (re = 1, im = 0) . 

See Figure 2 for further details. 
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To complete the Smith chart, the two circles' families are superimposed. The Smith chart 

therefore becomes a chart of r- and x-circles in the (re , im ) -plane for   1 . The 

intersection of an r-circle and an x-circle defines a point which represents a normalized load 

impedanc

e 

zL = r + j x . The actual load impedance is ZL = Z0 zL = Z0 (r + j x) . As an 

illustration, the impedance ZL = 85 +  j30  in a  Z0  = 50  -system is represented by the point P  in 

Figure 3. Here zL = 1.7 + j 0.6 at the intersection of the r = 1.7 and the x = 0.6  circles. Values 

for re and im may then be obtained from the projections onto the horizontal and 

vertical axes (see Figure 4). These are approximately given by re  0.3 and im  0.16 . 

Point Psc at (re = −1, im = 0) corresponds to r = 0 an

d 

x = 0 and therefore represents a 

short-

circuit. 

Poc at (re = 1, im = 0) corresponds to an infinite impedance therefore 

represents an open circuit. 

im 

re 

Figure 2: The x-circles in the complex plane (re , im ) . 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE 

148 

4 
EMTL 

 

 

 
 

 

 
Figure 3: Smith chart with rectangular coordinates. 

 
Figure 4: Direct extraction of the reflection coefficient  = re + jim along the horizontal 

and vertical axes. 

 
 

Instead of having a Smith chart marked with re and  im  marked in rectangular coordinates, 

the same chart can be marked in polar coordinates, so that every point in the -plane is 

specified  by  a  magnitude    and  a  phase  angle   .  This is  illustrated  in  Figure  5, where 

several    -circles  are  shown  in  dashed  lines  and  some   -angles  are  marked  around the 

  = 1 circle. The    -circles are normally not shown on commercially available Smith charts, 

but once the point representing a certain z L = r + jx is located, it is simply a matter of 

im 

Constant 

Resistance r 

Constant 

Reactance x 

re 
0 1 

 

 

 

 

 

 

 

 

 

 

re 

 

 

 

re = 1 line 

im 
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drawing a circle centred at the origin through the point. The ratio of the distance to the point 

and the radius to the edge of the chart is equal to the magnitude of  of the load reflection 

coefficient, and the angle that a line to that point makes with the real axis represents  . If, 

for 
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example the point 

 
 
 
 

Z1 = 100 + j50  

Z5 =  (an open 

circuit) 

Z2 = 75 − j100  

Z6 = 0 (a short circuit) 

Z3 = j200  

Z7 = 50  

Z4 = 150  

Z8 = 184 − j900 

 

 
The normalized impedances shown below are plotted in Figure 6. 
z1 = 2 + j z2 = 1.5 − j2 z3 = j4 z4 = 3 

z5 =  z6 = 0 z7 = 1 z8 = 3.68 − j18 

 

It is also possible to directly extract the reflection coefficient  on the Smith chart of Figure 6. 

Once the impedance point is plotted (the intersection point of a constant resistance circle and 

 z L = 1.7 + j0.6 is marked on the Smith chart at point P, we find that 
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L = 1/ 3 and  = 28 . 

 

Each  -circle intersects the real axis at two points. In Figure 5 we designate the point on the 

positive real axis as PM and on the negative real axis as Pm. Since x = 0 along the real axis, both 

these points represent situations of a purely resistive load, Z L = RL . Obviously, RL   Z 0 at PM 

where r  1 , and RL  Z 0 at Pm where r  1 . Since S = RL / Z 0  for  RL   Z 0 , the value  of the r-

circle passing through the point PM is numerically equal to the standing wave ratio. For the 

example where z L = 1.7 + j0.6 , we find that r = 2 at PM , so that S = r = 2. 

Figure 5: Smith chart in polar coordinates. 

 
 

Example 1: 

Consider a characteristic impedance of 50  with the following impedances: 

 
 

of a constant reactance circle), simply read the rectangular coordinates projection on the 

horizontal and vertical axis. This will give re , the real part of the reflection coefficient, and 

im , the imaginary part of the reflection coefficient. Alternatively, the reflection coefficient 

may be obtained in polar form by using the scales provided on the commercial Smith chart. 
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1 = 0.4 + 0.2 j 2 = 0.51 − 0.4 j 3 = 0.875 + 0.48j 4 = 0.5 

= 0.45  27 = 0.65 −38 = 0.998 29 = 0.5 0 

5 = 1 6 = −1 7 = 0 8 = 0.96 − 0.1 j 

= 1 0 = 1 180 = 0 = 0.97 −6 

 

Figure 6: Points plotted on the Smith chart for Example 1. 

 

The Smith chart is constructed by considering impedance (resistance and reactance). It can 

be used to analyse these parameters in both the series and parallel worlds. Adding elements 

in a series is straightforward. New elements can be added and their effects determined by 

simply moving along the circle to their respective values. However, summing elements in 

parallel is another matter, where admittances should be added. 

 

We know that, by definition, Y = 1/Z and Z = 1/Y. The admittance is expressed in mhos or −1 

or alternatively in Siemens or S. Also, as Z is complex, Y must also be complex. Therefore 

Y  = G + jB , (10) 

where G is called the conductance and B the susceptance of the element. When working with 
admittance,  the  first  thing  that  we  must  do  is  normalize  y   =  Y/Y0.  This  results  in        y 

= g + jb = 1/ z . So, what happens to the reflection coefficient? We note that 

Z2 Z4 

Z7 

Z8 

Z6 

Z5 

Z3 

Z1 
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  

 
 

=  
z − 1 

= 
(z − 1) / z 

= 
1 − y 

= − 
 y − 1  

. (11)
 

z + 1 (z + 1) / z 1 + y 
 

1 + y 


 

Thus, for a specific normalized impedance, say z1 = 1.7 + j0.6 , we can find the 

corresponding reflection coefficient as 1 = 0.33  28 . From (11), it then follows that the 

reflection coefficient for a normalized admittance of 

2 = −1 = 0.33  (28 + 180) . 

y2 = 1.7 + j0.6 will be 

 

This also implies that for a specific normalized impedance z, we can find y = 1/ 

z 

by rotating 

through an angle of 180° around the centre of the Smith chart on a constant radius (see 

Figure 7). 

 

Figure 7: Results of the 180° rotation 

 

Note that while z and y = 1/z represent the same component, the new point has a different 

position on the Smith chart and a different reflection value. This is due to the fact that the 

plot for z is an impedance plot, but for y it is an admittance plot. When solving problems 

where elements in series and in parallel are mixed together, we can use the same Smith chart 

by simply performing rotations where conversions from z to y or y to z are required. 
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2 Smith Charts and transmission line circuits 

So far we have based the construction of the Smith chart on the definition of the voltage 

reflection coefficient at the load. The question is: what happens when we connect the load to 

a length of transmission line as in Figure 8. 

 
Figure 8: Finite transmission line terminated with load impedance ZL. 
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i L L 

 
 
 

On a lossless transmission line with k =  , the input impedance at a distance z'  from the 

load is given by 

V (z ') 

 
 

1 + L e
− j 2z ' 

 

Zi = 
I (z ') 

= Z0 
1 −  

The normalised impedance is then 

e− j 2z '  
. (12) 

Zi (z ') 

 
 

1 + L e
− j 2z ' 1 + i 

 

zi = 

0 

= 

1 − L 

e− j 2z ' 
= 

1 −  
. (13) 

Consequently, the reflection coefficient seen looking into the lossless transmission line of 

length  z  is given by 

  =    e− j 2 z   =      e j  e− j 2 z  (14) 

This implies that as we move along the transmission line towards the generator,  the  
magnitude of the reflection coefficient does not change; the angle only changes from a value 

of    at the load to a value of  ( − 2  z )  at a distance  z   from the load. On the Smith chart, 

we are therefore rotating on a constant    circle. One full rotation around the Smith chart 

requires   that   2z  = 2  ,   so   that 

transmission line. 

z  =  /  =  / 2 where  is the wavelength on the 

 

Two additional scales in 
z  /   are usually provided along the perimeter of the  = 1 circle 

for  easy  reading  of  the  phase  change  2  z   due  to  a  change  in  line  length  z  .  The  outer scale 

is marked in “wavelengths towards generator” in the clockwise direction (increasing  z  ) and 

“wavelengths towards load” in the counter-clockwise direction (decreasing  z  ). Figure 9 

shows a typical commercially available Smith chart. 

 

Each    -circle intersects the real axis at two points. Refer to Figure 5. We designate the point 

on the positive real axis as PM and on the negative real axis as Pm. Since x = 0 along the real 
axis,  both  these   points   represent   situations   of   a   purely   resistive   input   impedance, 

Zi  = Ri   +  j0 . Obviously,  Ri    Z0  at PM   where  r  1 , and  Ri    Z0  at Pm where  r  1 . At the 

point PM we find that Zi = Ri = S Z0 , while Zi = Ri =Z0 / S at Pm. The point PM on an 

impedance chart corresponds to the positions of a voltage maximum (and current minimum) 
on the transmission line, while Pm represents a voltage minimum (and current maximum). 
Given an arbitrary normalised impedance z, the value of the r-circle passing through the point 

PM is numerically equal to the standing wave ratio. For the example, if z = 1.7 + j0.6 , we find 

L 

Z 

i 
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that r = 2 at PM , so that S = r = 2 . 
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Figure 9: The Smith chart. 

Example 2: 

Use the Smith chart to find the impedance of a short-circuited section of a lossless 50  co- 

axial transmission line that is 100 mm long. The transmission line has a dielectric of relative 

permittivity  r = 9 between the inner and outer conductor, and the frequency under 

consideration is 100 MHz. 

 
For the transmission line, we find

 that 

 
 

 =  

 
 

= 

6.2875 

 

 
rad/m and 
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 = 2 /  = 0.9993  1 m. The transmission line of length z  = 100 mm is therefore 

z  /  = 0.1  wavelengths long. 

• Since z L  = 0 , enter the Smith chart at a point Psc. 

• Move along the perimeter of the chart (  = 1 ) by 0.1 “wavelengths towards the 

generator” in a clockwise direction to point P1. 

• At P1 , read r = 0 and x  0.725 , or zi = j0.725 . Then Z i = j0.725  50 = j36.3  . 

0 0  r 
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Figure 10: Smith chart calculations for Example 2 and Example 3. 

 

Example 3: A lossless transmission line of length 0.434 and characteristic impedance 100  

is terminated in an impedance 260 + j180 . Find the voltage reflection coefficient, the 

standing-wave ratio, the input impedance, and the location of a voltage maximum on the 

line. 

 

Given  z  = 0.434  ,  Z 0  = 100   and  Z L  = 260 +  j180  . Then 

• Enter the Smith chart at z L = Z L / Z 0 = 2.6 + j1.8 shown as point P2 in Figure 10. 

 
 

• With the centre at the origin, draw a circle of radius OP2 = L = 0.6 . 

• Draw the straight line OP2 and extend it to P2  on  the  periphery.  Read  0.220  on 

“wavelengths towards generator” scale. The phase angle  of the load reflection may 

either be read directly from the Smith chart as 21 on the "Angle of Reflection 

Coefficient" scale. Therefore L = 0.6 e j21 /180 = 0.6 e j0.12 . 

P1 P ' 3 

P3 

P2 ' 

P2 

Psc 

O PM Poc 
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• The  = 0.6 circle intersects the positive real axis OPsc at r = S = 4 . Therefore the 

voltage standing-wave ratio is 4. 

• The find the input impedance, move  P2  at 0.220 by a total of 0.434 “wavelengths toward 

the generator” first to 0.500 (same as 0.000) and then further to 0.434− 

(0.500−0.220)=0.154 to  P3 . 
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R 

R 

R 

R 

0 L 

0 L 

0 L 

0 

 
 

• Join O and  P3  by a straight line which intersects the    = 0.6  circle at  P3 . Here  r = 0.69 

and x = 1.2 , or zi = 0.69 + j1.2 . Then Z i = (0.69 + j1.2) 100 = 69 + j120  . 

• In going from P2 to P3 , the  = 0.6 circle intersects the positive real axis at PM where 

there is a voltage maximum. Thus the voltage maximum appears at 0.250−0.220=0.030 

wavelengths from the load. 

 
3 Transmission line impedance matching. 

Transmission lines are often used for the transmission of power and information. For RF 

power transmission, it is highly desirable that as much power as possible is transmitted from 

the generator to the load and that as little power as possible is lost on the line itself. This will 

require that the load be matched to the characteristic impedance of the line, so that  the 

standing wave ratio on the line is as close to unity as possible. For information transmission it 

is essential that the lines be matched, because mismatched loads and junctions will result in 

echoes that distort the information-carrying signal. 

 

Impedance matching by quarter-wave transformer 

For a lossless transmission line of length l, characteristic impedance of 

terminated in a load impedance Z L , the input impedance is given by 

 
Z0 = R0 

 
and 

Z = R ZL + jR0 tan l 

 

i 0 
+ jZ tan l 

(15) 

= R  
ZL  + jR0 tan(2 l / ) 

.
 

 

0 
+ jZ   tan(2 l / ) 

 

If the transmission line has a length of l =  / 4 , this reduces to 

Z = R 
ZL + jR0 tan( / 2) 

 

i 0 
+ jZ   tan( / 2) 

= R   
ZL / tan( / 2) + jR0 

 

0 
/ tan( / 2) + jZ  

(16) 

= R   
0 + jR0 

 

0  
0 + jZ 

= 
(R0 )

2 

ZL 

. 

L 

L 
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This presents us with a simple way of matching a resistive load Z L = RL to a real-valued 

input impedance 

of 

Zi = Ri : insert a quarter-wave transformer with characteristic impedance 

R0 . From (16), we have Ri = (R0 )
2 / RL , or 

R0 = 

 
. (17) 

Note that the length of the transmission line has to be chosen to be equal to a quarter of a 
transmission line wavelength at the frequency where matching is desired. This matching 
method is therefore frequency sensitive, since the transmission line section will no longer be 

a quarter of a wavelength long at other frequencies. Also note that since the load is usually 

matched to a purely real impedance Zi = Ri , this method of impedance matching can only be 

applied to resistive loads  Z L  = RL , and is not useful for matching complex load impedances  

to a lossless (or low-loss) transmission line. 

 
Example 4 

A signal generator has an internal impedance of 50 . It needs to feed equal power 

through a lossless 50  transmission line with a phase velocity of 0.5c to two separate 
resistive loads of 

Ri RL 
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Ri1 RL1 

Ri 2 RL2 

 

1 

 
 

 
64  and 25  at a frequency of 10 MHz. Quarter-wave transformers are used to match the 

loads to the 50  line, as shown in Figure 11. 

(a) Determine the required characteristic impedances and physical lengths of the quarter- 

wavelength lines. 

(b) Find the standing-wave ratios on the matching line sections. 

Figure 11: Impedance matching by quarter-wave transformers (Example 4). 

 
(a) To feed equal power to the two loads, the input resistance at the junction with the main  

line looking toward each load must be 

Ri1 = 2R0 = 100  

Therefore 

R01  = = 80  

 
R02  = = 50  

an

d 

Ri 2 = 2R0 = 100  

 

Assume that the matching sections use the same dielectric as the main line. We know that 

u p  = = = 
c 

. 
2 

We can therefore deduce that it uses a dielectric with a relative permittivity of  r = 4 . 

 = 
u p 

= 
2 

= 15 m. 

f k 

The length of each transmission line section is therefore l =  / 4 = 3.75 m . 

 
(b) Under matched conditions, there are no standing waves on the main transmission line, i.e. 

0 0  r 

1 
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1 + L1 

1 − L1 

S = 1. The standing wave ratios on the two matching line sections are as follows: 

Matching section No. 1: 

 = 
RL1  − R01   

= 
64 − 80 

= −0.11 
  L1 

R    + R  64 + 80 

L1 01 

S  = = 
1 + 0.11 

= 1.25 

1 
1 − 0.11 

Matching section No. 2: 
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1 + L2 

1 − L2 

 
 

 = 
RL2  − R02   

= 
25 − 50 

= −0.33 
  L2 

R + R  25 + 50 

L2 02 

S  = = 
1 + 0.33 

= 1.99 

2 
1 − 0.33 

Single stub matching 

 

In matching of impedances, we are only allowed to use reactive components (i.e. equivalent   

to inductors and capacitors – no resistors). Recall that for short-circuited and open-circuited 

lossless transmission line sections of length l, the input impedance was given by 

 

Zi,s  = jZ0  tan l = jZ0  tan(2 l / ) , (18) 

and 

 

 
where 

 
 

Z 0 = R0 

Zi,o  = − jZ0 cot l = − jZ0 cot(2 l / ) , (19) 

is purely real. The impedances in (18) and (19) are purely reactive 

(imaginary), and therefore these transmission line sections act as inductors or capacitors, 

depending on the line length. We are going to make use of these elements (called 

transmission line stubs) to design matching circuits. In practice, it is more convenient to use 

short-circuited stubs. Short-circuited stubs are usually used in preference to open-circuited 

stubs because an infinite terminating impedance is more difficult to realise than a zero 

terminating impedance. Radiation from the open end of a stub makes it appear longer than it 

is, and compensation for these effects makes the use of open-circuited stubs more 

cumbersome. A short-circuited stub of an adjustable length is much easier to construct than 

an open-circuited stub. 

 
It is also more common to connect these stubs in parallel with the main line. For parallel 

connections, it is convenient to use admittances rather than impedances. In thee cases, we 

use the Smith chart as an admittance chart to design the matching networks. 

 

A single-stub matching circuit is depicted in Figure 12. Note that the short-circuited stub is 

connected in parallel with the main line. In order to match the complex load impedance Z L to 

the characteristic impedance of the lossless main line, Z 0 = R0 , we need to determine the 

lengths d and l. 
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Figure 12: Impedance matching by single stub method. 

For the transmission line to be matched at the point  B − B  , the basic requirement is 

Yi   = YB   + Ys 

= Y0 = 
1 

. 

R0 

(20) 

In terms of normalised admittances, (23) becomes 

yi  = yB  + ys   = 1 . (21) 

where yB = g B + jbB = YB / Y0 for the load section and ys = Ys / Y0 for the short-circuited 

stub. Note that ys = − j cot(2 l / ) is purely imaginary. It can therefore only contribute to 

the imaginary part of y i  . The position of  B − B   (or, in other words, the length d) must be 

chosen such that gB = 1 , i.e. 

 
Next, the length l is chosen such 

that 

 
yB  = 1 + jbB . (22) 

ys   = − jbB , (23) 

which yields yi = yB + ys = (1 + jbB ) + (− jbB ) = 1 . The circuit is therefore matched at 

B − B  , and at any point left of  B − B   as well. 
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If we use the Smith chart, we would rotate on a  -circle in a clockwise direction (towards 

the generator) when transforming the normalised load admittance to the admittance yB . 

However, according to (23), yB must also be located on the g = 1 circle. 

 

The use of the Smith chart for the purpose of designing a single-stub matching network is best 

illustrated by means of an example. 

 

Example  5: A 50  transmission line is connected to a load impedance  Z L  = 35 −  j37.5  . 

Find the position and length of a short-circuited stub required to match the load at a 

frequency 
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of 200 MHz. Assume that the transmission line is a co-axial line with a dielectric for which 

 r = 9 . 

 
Given  Z 0  = R0  = 50   and  ZL  = 35 − j47.5  . Therefore  zL  = ZL / Z0  = 0.7 − j 0.95 . 

• Enter the Smith chart at  z L   shown as point  P1     in Figure 13. 

• Draw a  -circle centred at O with radius OP1 . 

• Draw a straight line from  P1  through O to point  P2  on the perimeter, intersecting the   - 

circle at P2 , which represents yL . Note 0.109 at P2  on  the  “wavelengths  toward 

generator” scale. 

• Note the two points of intersection of the  -circle with the g = 1 circle: 

o At  P3 : 

o At  P4 : 
yB1 = 1 + j1.2 = 1 + jbB1 

yB 2  = 1 − j1.2 = 1 + jbB 2 

• Solutions for the position of the stub: 

o For  P3   (from  P2  to  P3 ) 

o For  P4   (from  P2  to  P4 ) 

 
d1  = (0.168 − 0.109) = 0.059 

d 2  = (0.332 − 0.109) = 0.223 

• Solutions for the length of the short-circuited stub to provide ys = − jbB : 

o For P3 (from Psc on the extreme right of the admittance chart to P3 ,  which 

represents ys = − jbB1 = − j1.2 ): l1 = (0.361 − 0.250) = 0.111 

o For P4 (from Psc on the extreme right of the admittance chart to P4 ,  which 

represents ys = − jbB 2 = j1.2 ): l2 = (0.139 + 0.250) = 0.389 

 

To compute the physical lengths of the transmission line sections, we need to calculate the 

wavelength on the transmission line. Therefore 

 
 

Thus: 

 = 
u p 

= 
1/

 

f 

 
= 

c /  r 

f f 

 0.5 m . 

 

d1 = 0.059 = 29.5 mm l1 = 0.111 = 55.5 mm 

d 2 = 0.223 = 111.5 mm l2 = 0.389 = 194.5 mm 
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Note that either of these two sets of solutions would match the load. In fact, there is a whole 

range of possible solutions. For example, when calculating d1 , instead of going straight from 

P2  to  P3 ,  we  could  have  started  at  P2 ,  rotated  clockwise  around  the  Smith  chart  n  times 

(representing an additional length of n / 

2 

) and continued on to P3  ,   yielding 

d1 = 0.059 + n / 2 , n = 0, 1, 2, . . . The same argument applies for d 2 , l1 and l2 . 
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Figure 13: Single-stub matching on an admittance chart (Example 5). 
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1 

 

P4 ' 
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